Biblio

Filters: Author is Laszka, Aron  [Clear All Filters]
2018-05-30
Laszka, Aron, Dubey, Abhishek, Walker, Michael, Schmidt, Doug.  2017.  Providing Privacy, Safety, and Security in IoT-Based Transactive Energy Systems Using Distributed Ledgers. Proceedings of the Seventh International Conference on the Internet of Things. :13:1–13:8.

Power grids are undergoing major changes due to rapid growth in renewable energy resources and improvements in battery technology. While these changes enhance sustainability and efficiency, they also create significant management challenges as the complexity of power systems increases. To tackle these challenges, decentralized Internet-of-Things (IoT) solutions are emerging, which arrange local communities into transactive microgrids. Within a transactive microgrid, "prosumers" (i.e., consumers with energy generation and storage capabilities) can trade energy with each other, thereby smoothing the load on the main grid using local supply. It is hard, however, to provide security, safety, and privacy in a decentralized and transactive energy system. On the one hand, prosumers' personal information must be protected from their trade partners and the system operator. On the other hand, the system must be protected from careless or malicious trading, which could destabilize the entire grid. This paper describes Privacy-preserving Energy Transactions (PETra), which is a secure and safe solution for transactive microgrids that enables consumers to trade energy without sacrificing their privacy. PETra builds on distributed ledgers, such as blockchains, and provides anonymity for communication, bidding, and trading.

2018-08-23
Laszka, Aron, Abbas, Waseem, Vorobeychik, Yevgeniy, Koutsoukos, Xenofon.  2017.  Synergic Security for Smart Water Networks: Redundancy, Diversity, and Hardening. Proceedings of the 3rd International Workshop on Cyber-Physical Systems for Smart Water Networks. :21–24.

Smart water networks can provide great benefits to our society in terms of efficiency and sustainability. However, smart capabilities and connectivity also expose these systems to a wide range of cyber attacks, which enable cyber-terrorists and hostile nation states to mount cyber-physical attacks. Cyber-physical attacks against critical infrastructure, such as water treatment and distribution systems, pose a serious threat to public safety and health. Consequently, it is imperative that we improve the resilience of smart water networks. We consider three approaches for improving resilience: redundancy, diversity, and hardening. Even though each one of these "canonical" approaches has been throughly studied in prior work, a unified theory on how to combine them in the most efficient way has not yet been established. In this paper, we address this problem by studying the synergy of these approaches in the context of protecting smart water networks from cyber-physical contamination attacks.

2017-05-16
Laszka, Aron, Abbas, Waseem, Sastry, S. Shankar, Vorobeychik, Yevgeniy, Koutsoukos, Xenofon.  2016.  Optimal Thresholds for Intrusion Detection Systems. Proceedings of the Symposium and Bootcamp on the Science of Security. :72–81.

In recent years, we have seen a number of successful attacks against high-profile targets, some of which have even caused severe physical damage. These examples have shown us that resourceful and determined attackers can penetrate virtually any system, even those that are secured by the "air-gap." Consequently, in order to minimize the impact of stealthy attacks, defenders have to focus not only on strengthening the first lines of defense but also on deploying effective intrusion-detection systems. Intrusion-detection systems can play a key role in protecting sensitive computer systems since they give defenders a chance to detect and mitigate attacks before they could cause substantial losses. However, an over-sensitive intrusion-detection system, which produces a large number of false alarms, imposes prohibitively high operational costs on a defender since alarms need to be manually investigated. Thus, defenders have to strike the right balance between maximizing security and minimizing costs. Optimizing the sensitivity of intrusion detection systems is especially challenging in the case when multiple inter-dependent computer systems have to be defended against a strategic attacker, who can target computer systems in order to maximize losses and minimize the probability of detection. We model this scenario as an attacker-defender security game and study the problem of finding optimal intrusion detection thresholds.

2015-11-12
Laszka, Aron, Vorobeychik, Yevgeniy, Koutsoukos, Xenofon.  2015.  Integrity Assurance in Resource-bounded Systems Through Stochastic Message Authentication. Proceedings of the 2015 Symposium and Bootcamp on the Science of Security. :1:1–1:12.

Assuring communication integrity is a central problem in security. However, overhead costs associated with cryptographic primitives used towards this end introduce significant practical implementation challenges for resource-bounded systems, such as cyber-physical systems. For example, many control systems are built on legacy components which are computationally limited but have strict timing constraints. If integrity protection is a binary decision, it may simply be infeasible to introduce into such systems; without it, however, an adversary can forge malicious messages, which can cause signi cant physical or financial harm. We propose a formal game-theoretic framework for optimal stochastic message authentication, providing provable integrity guarantees for resource-bounded systems based on an existing MAC scheme. We use our framework to investigate attacker deterrence, as well as optimal design of stochastic message authentication schemes when deterrence is impossible. Finally, we provide experimental results on the computational performance of our framework in practice.

2016-04-07
Laszka, Aron, Vorobeychik, Yevgeniy, Koutsoukos, Xenofon.  2015.  Optimal Personalized Filtering Against Spear-phishing Attacks. Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence. :958–964.

To penetrate sensitive computer networks, attackers can use spear phishing to sidestep technical security mechanisms by exploiting the privileges of careless users. In order to maximize their success probability, attackers have to target the users that constitute the weakest links of the system. The optimal selection of these target users takes into account both the damage that can be caused by a user and the probability of a malicious e-mail being delivered to and opened by a user. Since attackers select their targets in a strategic way, the optimal mitigation of these attacks requires the defender to also personalize the e-mail filters by taking into account the users' properties.

In this paper, we assume that a learned classifier is given and propose strategic per-user filtering thresholds for mitigating spear-phishing attacks. We formulate the problem of filtering targeted and non-targeted malicious e-mails as a Stackelberg security game. We characterize the optimal filtering strategies and show how to compute them in practice. Finally, we evaluate our results using two real-world datasets and demonstrate that the proposed thresholds lead to lower losses than nonstrategic thresholds.

2016-04-08
Abbas, Waseem, Laszka, Aron, Vorobeychik, Yevgeniy, Koutsoukos, Xenofon.  2015.  Scheduling Intrusion Detection Systems in Resource-Bounded Cyber-Physical Systems. Proceedings of the First ACM Workshop on Cyber-Physical Systems-Security and/or PrivaCy. :55–66.

In order to be resilient to attacks, a cyber-physical system (CPS) must be able to detect attacks before they can cause significant damage. To achieve this, \emph{intrusion detection systems} (IDS) may be deployed, which can detect attacks and alert human operators, who can then intervene. However, the resource-constrained nature of many CPS poses a challenge, since reliable IDS can be computationally expensive. Consequently, computational nodes may not be able to perform intrusion detection continuously, which means that we have to devise a schedule for performing intrusion detection. While a uniformly random schedule may be optimal in a purely cyber system, an optimal schedule for protecting CPS must also take into account the physical properties of the system, since the set of adversarial actions and their consequences depend on the physical systems. Here, in the context of water distribution networks, we study IDS scheduling problems in two settings and under the constraints on the available battery supplies. In the first problem, the objective is to design, for a given duration of time $T$, scheduling schemes for IDS so that the probability of detecting an attack is maximized within that duration. We propose efficient heuristic algorithms for this general problem and evaluate them on various networks. In the second problem, our objective is to design scheduling schemes for IDS so that the overall lifetime of the network is maximized while ensuring that an intruder attack is always detected. Various strategies to deal with this problem are presented and evaluated for various networks.