Biblio
Filters: Author is Li, Yue [Clear All Filters]
Design of Smart Risk Assessment System for Agricultural Products and Food Safety Inspection Based on Multivariate Data Analysis. 2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT). :1206—1210.
.
2022. Design of smart risk assessment system for the agricultural products and the food safety inspection based on multivariate data analysis is studied in this paper. The designed quality traceability system also requires the collaboration and cooperation of various companies in the supply chain, and a unified database, including agricultural product identification system, code system and security status system, is required to record in detail the trajectory and status of agricultural products in the logistics chain. For the improvement, the multivariate data analysis is combined. Hadoop cannot be used on hardware with high price and high reliability. Even for groups with high probability of the problems, HDFS will continue to use when facing problems, and at the same time. Hence, the core model of HDFS is applied into the system. In the verification part, the analytic performance is simulated.
Anomaly Detection of Power Big Data Based on Improved Support Vector Machine. 2022 4th International Academic Exchange Conference on Science and Technology Innovation (IAECST). :102—105.
.
2022. To reduce the false negative rate in power data anomaly detection, enhance the overall detection accuracy and reliability, and create a more stable data detection environment, this paper designs a power big data anomaly detection method based on improved support vector machine technology. The abnormal features are extracted in advance, combined with the changes of power data, the multi-target anomaly detection nodes are laid, and on this basis, the improved support vector machine anomaly detection model is constructed. The anomaly detection is realized by combining the normalization processing of the equivalent vector. The final test results show that compared with the traditional clustering algorithm big data anomaly detection test group and the traditional multi-domain feature extraction big data anomaly detection test group, the final false negative rate of the improved support vector machine big data exception detection test group designed in this paper is only 2.04, which shows that the effect of the anomaly detection method is better. It is more accurate and reliable for testing in a complex power environment and has practical application value.
Cross-term suppression of multi-component signals based on improved STFT-Wigner. 2020 International Wireless Communications and Mobile Computing (IWCMC). :1082–1086.
.
2020. Cross-term interference exists in the WVD of multi-component signals in time-frequency analysis, and the STFT is limited by Heisenberg uncertainty criterion. For multicomponent signals under noisy background, this paper proposes an improved STFT-Wigner algorithm, which establishes a threshold based on the exponential multiplication result compared to the original algorithm, so as to weaken the cross term and reduce the impact of noise on the signal, and improve the time-frequency aggregation of the signal. Simulation results show that the improved algorithm has higher time-frequency aggregation than other methods. Similarly, for cross-term suppression, our method is superior to many other TF analysis methods in low signal-to-noise ratio (SNR) environment.
Finding Concurrency Exploits on Smart Contracts. 2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-Companion). :144—146.
.
2019. Smart contracts have been widely used on Ethereum to enable business services across various application domains. However, they are prone to different forms of security attacks due to the dynamic and non-deterministic blockchain runtime environment. In this work, we highlighted a general miner-side type of exploit, called concurrency exploit, which attacks smart contracts via generating malicious transaction sequences. Moreover, we designed a systematic algorithm to automatically detect such exploits. In our preliminary evaluation, our approach managed to identify real vulnerabilities that cannot be detected by other tools in the literature.