Biblio

Filters: Author is Yu, Zongchao  [Clear All Filters]
2020-10-14
Song, Yufei, Yu, Zongchao, Liu, Xuan, Tian, Jianwei, CHEN, Mu.  2019.  Isolation Forest based Detection for False Data Attacks in Power Systems. 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia). :4170—4174.
Power systems become a primary target of cyber attacks because of the vulnerability of the integrated communication networks. An attacker is able to manipulate the integrity of real-time data by maliciously modifying the readings of meters transmitted to the control center. Moreover, it is demonstrated that such attack can escape the bad data detection in state estimation if the topology and network information of the entire power grid is known to the attacker. In this paper, we propose an isolation forest (IF) based detection algorithm as a countermeasure against false data attack (FDA). This method requires no tedious pre-training procedure to obtain the labels of outliers. In addition, comparing with other algorithms, the IF based detection method can find the outliers quickly. The performance of the proposed detection method is verified using the simulation results on the IEEE 118-bus system.