Biblio

Filters: Author is Sun, Yizhen  [Clear All Filters]
2021-10-12
Sun, Yizhen, Lin, Dandan, Song, Hong, Yan, Minjia, Cao, Linjing.  2020.  A Method to Construct Vulnerability Knowledge Graph Based on Heterogeneous Data. 2020 16th International Conference on Mobility, Sensing and Networking (MSN). :740–745.
In recent years, there are more and more attacks and exploitation aiming at network security vulnerabilities. It is effective for us to prevent criminals from exploiting vulnerabilities for attacks and help security analysts maintain equipment security that knows vulnerabilities and threats on time. With the knowledge graph, we can organize, manage, and utilize the massive information effectively in cyberspace. In this paper we construct the vulnerability ontology after analyzing multi-source heterogeneous databases. And the vulnerability knowledge graph is established. Experimental results show that the accuracy of entity recognition for extracting vendor names reaches 89.76%. The more rules used in entity recognition, the higher the accuracy and the lower the error rate.
2020-10-16
Tian, Zheng, Wu, Weidong, Li, Shu, Li, Xi, Sun, Yizhen, Chen, Zhongwei.  2019.  Industrial Control Intrusion Detection Model Based on S7 Protocol. 2019 IEEE 3rd Conference on Energy Internet and Energy System Integration (EI2). :2647—2652.

With the proposal of the national industrial 4.0 strategy, the integration of industrial control network and Internet technology is getting higher and higher. At the same time, the closeness of industrial control networks has been broken to a certain extent, making the problem of industrial control network security increasingly serious. S7 protocol is a private protocol of Siemens Company in Germany, which is widely used in the communication process of industrial control network. In this paper, an industrial control intrusion detection model based on S7 protocol is proposed. Traditional protocol parsing technology cannot resolve private industrial control protocols, so, this model uses deep analysis algorithm to realize the analysis of S7 data packets. At the same time, in order to overcome the complexity and portability of static white list configuration, this model dynamically builds a white list through white list self-learning algorithm. Finally, a composite intrusion detection method combining white list detection and abnormal behavior detection is used to detect anomalies. The experiment proves that the method can effectively detect the abnormal S7 protocol packet in the industrial control network.