Biblio
Recognizing the need for proactive analysis of cyber adversary behavior, this paper presents a new event-driven simulation model and implementation to reveal the efforts needed by attackers who have various entry points into a network. Unlike previous models which focus on the impact of attackers' actions on the defender's infrastructure, this work focuses on the attackers' strategies and actions. By operating on a request-response session level, our model provides an abstraction of how the network infrastructure reacts to access credentials the adversary might have obtained through a variety of strategies. We present the current capabilities of the simulator by showing three variants of Bronze Butler APT on a network with different user access levels.
With widely applied in various fields, deep learning (DL) is becoming the key driving force in industry. Although it has achieved great success in artificial intelligence tasks, similar to traditional software, it has defects that, once it failed, unpredictable accidents and losses would be caused. In this paper, we propose a test cases generation technique based on an adversarial samples generation algorithm for image classification deep neural networks (DNNs), which can generate a large number of good test cases for the testing of DNNs, especially in case that test cases are insufficient. We briefly introduce our method, and implement the framework. We conduct experiments on some classic DNN models and datasets. We further evaluate the test set by using a coverage metric based on states of the DNN.