Biblio
Advanced persistent threats (APTs) are a particularly troubling challenge for software systems. The adversarial nature of the security domain, and APTs in particular, poses unresolved challenges to the design of self-* systems, such as how to defend against multiple types of attackers with different goals and capabilities. In this interaction, the observability of each side is an important and under-investigated issue in the self-* domain. We propose a model of APT defense that elevates observability as a first-class concern. We evaluate this model by showing how an informed approach that uses observability improves the defender's utility compared to a uniform random strategy, can enable robust planning through sensitivity analysis, and can inform observability-related architectural design decisions.
Programming language definitions assign formal meaning to complete programs. Programmers, however, spend a substantial amount of time interacting with incomplete programs -- programs with holes, type inconsistencies and binding inconsistencies -- using tools like program editors and live programming environments (which interleave editing and evaluation). Semanticists have done comparatively little to formally characterize (1) the static and dynamic semantics of incomplete programs; (2) the actions available to programmers as they edit and inspect incomplete programs; and (3) the behavior of editor services that suggest likely edit actions to the programmer based on semantic information extracted from the incomplete program being edited, and from programs that the system has encountered in the past. As such, each tool designer has largely been left to develop their own ad hoc heuristics.
This paper serves as a vision statement for a research program that seeks to develop these "missing" semantic foundations. Our hope is that these contributions, which will take the form of a series of simple formal calculi equipped with a tractable metatheory, will guide the design of a variety of current and future interactive programming tools, much as various lambda calculi have guided modern language designs. Our own research will apply these principles in the design of Hazel, an experimental live lab notebook programming environment designed for data science tasks. We plan to co-design the Hazel language with the editor so that we can explore concepts such as edit-time semantic conflict resolution mechanisms and mechanisms that allow library providers to install library-specific editor services.
The ubiquitously-installed Java Runtime Environment (JRE) provides a complex, flexible set of mechanisms that support the execution of untrusted code inside a secure sandbox. However, many recent exploits have successfully escaped the sandbox, allowing attackers to infect numerous Java hosts. We hypothesize that the Java security model affords developers more flexibility than they need or use in practice, and thus its complexity compromises security without improving practical functionality. We describe an empirical study of the ways benign open-source Java applications use and interact with the Java security manager. We found that developers regularly misunderstand or misuse Java security mechanisms, that benign programs do not use all of the vast flexibility afforded by the Java security model, and that there are clear differences between the ways benign and exploit programs interact with the security manager. We validate these results by deriving two restrictions on application behavior that restrict (1) security manager modifications and (2) privilege escalation. We demonstrate that enforcing these rules at runtime stop a representative proportion of modern Java 7 exploits without breaking backwards compatibility with benign applications. These practical rules should be enforced in the JRE to fortify the Java sandbox.
The ubiquitously-installed Java Runtime Environment (JRE) provides a complex, flexible set of mechanisms that support the execution of untrusted code inside a secure sandbox. However, many recent exploits have successfully escaped the sandbox, allowing attackers to infect numerous Java hosts. We hypothesize that the Java security model affords developers more flexibility than they need or use in practice, and thus its complexity compromises security without improving practical functionality. We describe an empirical study of the ways benign open-source Java applications use and interact with the Java security manager. We found that developers regularly misunderstand or misuse Java security mechanisms, that benign programs do not use all of the vast flexibility afforded by the Java security model, and that there are clear differences between the ways benign and exploit programs interact with the security manager. We validate these results by deriving two restrictions on application behavior that restrict (1) security manager modifications and (2) privilege escalation. We demonstrate that enforcing these rules at runtime stop a representative proportion of modern Java 7 exploits without breaking backwards compatibility with benign applications. These practical rules should be enforced in the JRE to fortify the Java sandbox.