Biblio
Filters: Author is Hahn, A. [Clear All Filters]
CP-TRAM: Cyber-Physical Transmission Resiliency Assessment Metric. IEEE Transactions on Smart Grid. 11:5114—5123.
.
2020. Natural disasters and cyber intrusions threaten the normal operation of the critical electric grid infrastructure. There is still no widely accepted methodology to quantify the resilience in power systems. In this work, power system resiliency refers to the ability of the system to keep provide energy to the critical load even with adverse events. A significant amount of work has been done to quantify the resilience for distribution systems. Even though critical loads are located in distribution system, transmission system play a critical role in supplying energy to distribution feeder in addition to the Distributed Energy Resources (DERs). This work focuses on developing a framework to quantify the resiliency of cyber-physical transmission systems. Quantifying the resiliency of the transmission network, is important to determine and devise suitable control mechanisms to minimize the effects of undesirable events in the power grid. The proposed metric is based on both system infrastructure and with changing operating conditions. A graphical analysis along with measure of critical parameters of the network is performed to quantify the redundancy and vulnerabilities in the physical network of the system. A similar approach is used to quantify the cyber-resiliency. The results indicate the capability of the proposed framework to quantify cyber-physical resilience of the transmission systems.
Conference Name: IEEE Transactions on Smart Grid
Modeling and Analysis Cyber Threats in Power Systems Using Architecture Analysis Design Language (AADL). 2019 Resilience Week (RWS). 1:213–218.
.
2019. The lack of strong cyber-physical modeling capabilities presents many challenges across the design, development, verification, and maintenance phases of a system [7]. Novel techniques for modeling the cyber-grid components, along with analysis and verification techniques, are imperative to the deployment of a resilient and robust power grid. Several works address False Data Injection (FDI) attacks to the power grid. However, most of them suffer from the lack of a model to investigate the effects of attacks. This paper proposed a cyber-physical model using Architecture Analysis & Design Language (AADL) [15] and power system information models to address different attacks in power systems.
Enhancing Microgrid Resiliency Against Cyber Vulnerabilities. 2018 IEEE Industry Applications Society Annual Meeting (IAS). :1—8.
.
2018. Recent cyber attacks on the power grid have been of increasing complexity and sophistication. In order to understand the impact of cyber-attacks on the power system resiliency, it is important to consider an holistic cyber-physical system specially with increasing industrial automation. In this work, device level resilience properties of the various controllers and their impact on the microgrid resiliency is studied. In addition, a cyber-physical resiliency metric considering vulnerabilities, system model, and device level properties is proposed. A use case is presented inspired by the recent Ukraine cyber-attack. A use case has been presented to demonstrate application of the developed cyber-physical resiliency metric to enhance situational awareness of the operator, and enable better control actions to improve resiliency.