Biblio

Filters: Author is Claire J. Tomlin  [Clear All Filters]
2019-08-28
Sean Anderson, Patricia Hidalgo-Gonzalez, Roel Dobbe, Claire J. Tomlin.  2019.  Distributed Model Predictive Control for Autonomous Droop-Controlled Inverter-Based Microgrids. 58th IEEE Conference on Decision and Control (CDC 2019).

Microgrids must be able to restore voltage and frequency to their reference values during transient events; inverters are used as part of a microgrid's hierarchical control for maintaining power quality. Reviewed methods either do not allow for intuitive trade-off tuning between the objectives of synchronous state restoration, local reference tracking, and disturbance rejection, or do not consider all of these objectives. In this paper, we address all of these objectives for voltage restoration in droop-controlled inverter-based islanded micro-grids. By using distributed model predictive control (DMPC) in series with an unscented Kalman Filter (UKF), we design a secondary voltage controller to restore the voltage to the reference in finite time. The DMPC solves a reference tracking problem while rejecting reactive power disturbances in a noisy system. The method we present accounts for non-zero mean disturbances by design of a random-walk estimator. We validate the method's ability to restore the voltage in finite time via modeling a multi-node microgrid in Simulink.

Margaret Chapman, Jonathan Lacotte, Aviv Tamar, Donggun Lee, Kevin M. Smith, Victoria Cheng, Jamie Fisac, Susmit Jha, Marco Pavone, Claire J. Tomlin.  2019.  A Risk-Sensitive Finite-Time Reachability Approach for Safety of Stochastic Dynamic Systems. American Control Conference.

A classic reachability problem for safety of dynamic systems is to compute the set of initial states from which the state trajectory is guaranteed to stay inside a given constraint set over a given time horizon. In this paper, we leverage existing theory of reachability analysis and risk measures to devise a risk-sensitive reachability approach for safety of stochastic dynamic systems under non-adversarial disturbances over a finite time horizon. Specifically, we first introduce the notion of a risk-sensitive safe set as a set of initial states from which the risk of large constraint violations can be reduced to a required level via a control policy, where risk is quantified using the Conditional Value-at-Risk (CVaR) measure. Second, we show how the computation of a risk-sensitive safe set can be reduced to the solution to a Markov Decision Process (MDP), where cost is assessed according to CVaR. Third, leveraging this reduction, we devise a tractable algorithm to approximate a risk-sensitive safe set, and provide theoretical arguments about its correctness. Finally, we present a realistic example inspired from stormwater catchment design to demonstrate the utility of risk-sensitive reachability analysis. In particular, our approach allows a practitioner to tune the level of risk sensitivity from worst-case (which is typical for Hamilton-Jacobi reachability analysis) to risk-neutral (which is the case for stochastic reachability analysis).

2020-10-30
David Fridovich-Keil, Andrea Bajcsy, Jaime Fisac, Sylvia Herbert, Steven Wang, Anca Dragan, Claire J. Tomlin.  2019.  Confidence-aware motion prediction for real-time collision avoidance. The International Journal of Robotics Research. 39(2-3):250-265.

One of the most difficult challenges in robot motion planning is to account for the behavior of other moving agents, such as humans. Commonly, practitioners employ predictive models to reason about where other agents are going to move. Though there has been much recent work in building predictive models, no model is ever perfect: an agent can always move unexpectedly, in a way that is not predicted or not assigned sufficient probability. In such cases, the robot may plan trajectories that appear safe but, in fact, lead to collision. Rather than trust a model’s predictions blindly, we propose that the robot should use the model’s current predictive accuracy to inform the degree of confidence in its future predictions. This model confidence inference allows us to generate probabilistic motion predictions that exploit modeled structure when the structure successfully explains human motion, and degrade gracefully whenever the human moves unexpectedly. We accomplish this by maintaining a Bayesian belief over a single parameter that governs the variance of our human motion model. We couple this prediction algorithm with a recently proposed robust motion planner and controller to guide the construction of robot trajectories that are, to a good approximation, collision-free with a high, user-specified probability. We provide extensive analysis of the combined approach and its overall safety properties by establishing a connection to reachability analysis, and conclude with a hardware demonstration in which a small quadcopter operates safely in the same space as a human pedestrian.

2016-04-08
Young Hwan Chang, Qie Hu, Claire J. Tomlin.  2015.  Secure Estimation based Kalman Filter for Cyber-Physical Systems against Adversarial Attacks. CoRR. abs/1512.03853

Cyber-physical systems (CPSs) are found in many applications such as power networks, manufacturing processes, and air and ground transportation systems. Maintaining security of these systems under cyber attacks is an important and challenging task, since these attacks can be erratic and thus difficult to model. Secure estimation problems study how to estimate the true system states when measurements are corrupted and/or control inputs are compromised by attackers. The authors in [1] proposed a secure estimation method when the set of attacked nodes (sensors, controllers) is fixed. In this paper, we extend these results to scenarios in which the set of attacked nodes can change over time. We formulate this secure estimation problem into the classical error correction problem [2] and we show that accurate decoding can be guaranteed under a certain condition. Furthermore, we propose a combined secure estimation method with our proposed secure estimator above and the Kalman Filter (KF) for improved practical performance. Finally, we demonstrate the performance of our method through simulations of two scenarios where an unmanned aerial vehicle is under adversarial attack.