Biblio

Filters: Author is Kwasinski, A.  [Clear All Filters]
2021-02-08
Kwasinski, A..  2020.  Modeling of Cyber-Physical Intra-Dependencies in Electric Power Grids and Their Effect on Resilience. 2020 8th Workshop on Modeling and Simulation of Cyber-Physical Energy Systems. :1–6.
This paper studies the modeling of cyber-physical dependencies observed within power grids and the effects of these intra-dependencies, on power grid resilience, which is evaluated quantitatively. A fundamental contribution of this paper is the description of the critically important role played by cyber-physical buffers as key components to limit the negative effect of intra-dependencies on power grids resilience. Although resilience issues in the electric power provision service could be limited thanks to the use of local energy storage devices as the realization of service buffers, minimal to no autonomy in data connectivity buffers make cyber vulnerabilities specially critical in terms of resilience. This paper also explains how these models can be used for improved power grids resilience planning considering internal cyber-physical interactions.
2021-02-23
Hartpence, B., Kwasinski, A..  2020.  Combating TCP Port Scan Attacks Using Sequential Neural Networks. 2020 International Conference on Computing, Networking and Communications (ICNC). :256—260.

Port scans are a persistent problem on contemporary communication networks. Typically used as an attack reconnaissance tool, they can also create problems with application performance and throughput. This paper describes an architecture that deploys sequential neural networks (NNs) to classify packets, separate TCP datagrams, determine the type of TCP packet and detect port scans. Sequential networks allow this lengthy task to learn from the current environment and to be broken up into component parts. Following classification, analysis is performed in order to discover scan attempts. We show that neural networks can be used to successfully classify general packetized traffic at recognition rates above 99% and more complex TCP classes at rates that are also above 99%. We demonstrate that this specific communications task can successfully be broken up into smaller work loads. When tested against actual NMAP scan pcap files, this model successfully discovers open ports and the scan attempts with the same high percentage and low false positives.