Biblio

Filters: Author is Adwait Nadkarni, North Carolina State University  [Clear All Filters]
2016-07-13
Benjamin Andow, North Carolina State University, Adwait Nadkarni, North Carolina State University, Blake Bassett, University of Illinois at Urbana-Champaign, William Enck, North Carolina State University, Tao Xie, University of Illinois at Urbana-Champaign.  2016.  A Study of Grayware on Google Play. Workshop on Mobile Security Technologies.

While there have been various studies identifying and classifying Android malware, there is limited discussion of the broader class of apps that fall in a gray area. Mobile grayware is distinct from PC grayware due to differences in operating system properties. Due to mobile grayware’s subjective nature, it is difficult to identify mobile grayware via program analysis alone. Instead, we hypothesize enhancing analysis with text analytics can effectively reduce human effort when triaging grayware. In this paper, we design and implement heuristics for seven main categories of grayware.We then use these heuristics to simulate grayware triage on a large set of apps from Google Play. We then present the results of our empirical study, demonstrating a clear problem of grayware. In doing so, we show how even relatively simple heuristics can quickly triage apps that take advantage of users in an undesirable way.