Biblio
Security features are often hardwired into software applications, making it difficult to adapt security responses to reflect changes in runtime context and new attacks. In prior work, we proposed the idea of architecture-based self-protection as a way of separating adaptation logic from application logic and providing a global perspective for reasoning about security adaptations in the context of other business goals. In this paper, we present an approach, based on this idea, for combating denial-of-service (DoS) attacks. Our approach allows DoS-related tactics to be composed into more sophisticated mitigation strategies that encapsulate possible responses to a security problem. Then, utility-based reasoning can be used to consider different business contexts and qualities. We describe how this approach forms the underpinnings of a scientific approach to self-protection, allowing us to reason about how to make the best choice of mitigation at runtime. Moreover, we also show how formal analysis can be used to determine whether the mitigations cover the range of conditions the system is likely to encounter, and the effect of mitigations on other quality attributes of the system. We evaluate the approach using the Rainbow self-adaptive framework and show how Rainbow chooses DoS mitigation tactics that are sensitive to different business contexts.
As new market opportunities, technologies, platforms, and frameworks become available, systems require large-scale and systematic architectural restructuring to accommodate them. Today's architects have few techniques to help them plan this architecture evolution. In particular, they have little assistance in planning alternative evolution paths, trading off various aspects of the different paths, or knowing best practices for particular domains. In this paper, we describe an approach for planning and reasoning about architecture evolution. Our approach focuses on providing architects with the means to model prospective evolution paths and supporting analysis to select among these candidate paths. To demonstrate the usefulness of our approach, we show how it can be applied to an actual architecture evolution. In addition, we present some theoretical results about our evolution path constraint specification language.