Biblio

Filters: Author is Luo, Weifeng  [Clear All Filters]
2022-07-29
Luo, Weifeng, Xiao, Liang.  2021.  Reinforcement Learning Based Vulnerability Analysis of Data Injection Attack for Smart Grids. 2021 40th Chinese Control Conference (CCC). :6788—6792.
Smart grids have to protect meter measurements against false data injection attacks. By modifying the meter measurements, the attacker misleads the control decisions of the control center, which results in physical damages of power systems. In this paper, we propose a reinforcement learning based vulnerability analysis scheme for data injection attack without relying on the power system topology. This scheme enables the attacker to choose the data injection attack vector based on the meter measurements, the power system status, the previous injected errors and the number of meters to compromise. By combining deep reinforcement learning with prioritized experience replay, the proposed scheme more frequently replays the successful vulnerability detection experiences while bypassing the bad data detection, which is able to accelerate the learning speed. Simulation results based on the IEEE 14 bus system show that this scheme increases the probability of successful vulnerability detection and reduce the number of meters to compromise compared with the benchmark scheme.
2021-05-13
Liu, Xinlin, Huang, Jianhua, Luo, Weifeng, Chen, Qingming, Ye, Peishan, Wang, Dingbo.  2020.  Research on Attack Mechanism using Attack Surface. 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :137–141.
A approach to research on the attack mechanism designs through attack surface technology due to the complexity of the attack mechanism. The attack mechanism of a mimic architecture is analyzed in a relative way using attack surface metrics to indicate whether mimic architectures are safer than non-mimic architectures. The definition of the architectures attack surface in terms of the mimic brackets along three abstract dimensions referenced the system attack surface. The larger the attack surface, the more likely the architecture will be attacked.