Biblio
In parallel with the meteoric rise of mobile software, we are witnessing an alarming escalation in the number and sophistication of the security threats targeted at mobile platforms, particularly Android, as the dominant platform. While existing research has made significant progress towards detection and mitigation of Android security, gaps and challenges remain. This paper contributes a comprehensive taxonomy to classify and characterize the state-of-the-art research in this area. We have carefully followed the systematic literature review process, and analyzed the results of more than 300 research papers, resulting in the most comprehensive and elaborate investigation of the literature in this area of research. The systematic analysis of the research literature has revealed patterns, trends, and gaps in the existing literature, and underlined key challenges and opportunities that will shape the focus of future research efforts.
The rising popularity of Android and the GUI-driven nature of its apps have motivated the need for applicable automated GUI testing techniques. Although exhaustive testing of all possible combinations is the ideal upper bound in combinatorial testing, it is often infeasible, due to the combinatorial explosion of test cases. This paper presents TrimDroid, a framework for GUI testing of Android apps that uses a novel strategy to generate tests in a combinatorial, yet scalable, fashion. It is backed with automated program analysis and formally rigorous test generation engines. TrimDroid relies on program analysis to extract formal specifications. These speci- fications express the app’s behavior (i.e., control flow between the various app screens) as well as the GUI elements and their dependencies. The dependencies among the GUI elements comprising the app are used to reduce the number of combinations with the help of a solver. Our experiments have corroborated TrimDroid’s ability to achieve a comparable coverage as that possible under exhaustive GUI testing using significantly fewer test cases.
In parallel with the meteoric rise of mobile software, we are witnessing an alarming escalation in the number and sophistication of the security threats targeted at mobile platforms, particularly Android, as the dominant platform. While existing research has made significant progress towards detection and mitigation of Android security, gaps and challenges remain. This paper contributes a comprehensive taxonomy to classify and characterize the state-of-the-art research in this area. We have carefully followed the systematic literature review process, and analyzed the results of more than 300 research papers, resulting in the most comprehensive and elaborate investigation of the literature in this area of research. The systematic analysis of the research literature has revealed patterns, trends, and gaps in
Android is the most popular platform for mobile devices. It facilitates sharing of data and services among applications using a rich inter-app communication system. While access to resources can be controlled by the Android permission system, enforcing permissions is not sufficient to prevent security violations, as permissions may be mismanaged, intentionally or unintentionally. Android's enforcement of the permissions is at the level of individual apps, allowing multiple malicious apps to collude and combine their permissions or to trick vulnerable apps to perform actions on their behalf that are beyond their individual privileges. In this paper, we present COVERT, a tool for compositional analysis of Android inter-app vulnerabilities. COVERT's analysis is modular to enable incremental analysis of applications as they are installed, updated, and removed. It statically analyzes the reverse engineered source code of each individual app, and extracts relevant security specifications in a format suitable for formal verification. Given a collection of specifications extracted in this way, a formal analysis engine (e.g., model checker) is then used to verify whether it is safe for a combination of applications-holding certain permissions and potentially interacting with each other-to be installed together. Our experience with using COVERT to examine over 500 real-world apps corroborates its ability to find inter-app vulnerabilities in bundles of some of the most popular apps on the market.