Biblio
Modern smartphone platforms implement permission-based models to protect access to sensitive data and system resources. However, apps can circumvent the permission model and gain access to protected data without user consent by using both covert and side channels. Side channels present in the implementation of the permission system allow apps to access protected data and system resources without permission; whereas covert channels enable communication between two colluding apps so that one app can share its permission-protected data with another app lacking those permissions. Both pose threats to user privacy.
In this work, we make use of our infrastructure that runs hundreds of thousands of apps in an instrumented environment. This testing environment includes mechanisms to monitor apps' runtime behaviour and network traffic. We look for evidence of side and covert channels being used in practice by searching for sensitive data being sent over the network for which the sending app did not have permissions to access it. We then reverse engineer the apps and third-party libraries responsible for this behaviour to determine how the unauthorized access occurred. We also use software fingerprinting methods to measure the static prevalence of the technique that we discover among other apps in our corpus.
Using this testing environment and method, we uncovered a number of side and covert channels in active use by hundreds of popular apps and third-party SDKs to obtain unauthorized access to both unique identifiers as well as geolocation data. We have responsibly disclosed our findings to Google and have received a bug bounty for our work.
Older adults (65+) are becoming primary users of emerging smart systems, especially in health care. However, these technologies are often not designed for older users and can pose serious privacy and security concerns due to their novelty, complexity, and propensity to collect and communicate vast amounts of sensitive information. Efforts to address such concerns must build on an in-depth understanding of older adults' perceptions and preferences about data privacy and security for these technologies, and accounting for variance in physical and cognitive abilities. In semi-structured interviews with 46 older adults, we identified a range of complex privacy and security attitudes and needs specific to this population, along with common threat models, misconceptions, and mitigation strategies. Our work adds depth to current models of how older adults' limited technical knowledge, experience, and age-related declines in ability amplify vulnerability to certain risks; we found that health, living situation, and finances play a notable role as well. We also found that older adults often experience usability issues or technical uncertainties in mitigating those risks -- and that managing privacy and security concerns frequently consists of limiting or avoiding technology use. We recommend educational approaches and usable technical protections that build on seniors' preferences.
Intelligent voice assistants (IVAs) and other voice-enabled devices already form an integral component of the Internet of Things and will continue to grow in popularity. As their capabilities evolve, they will move beyond relying on the wake-words today’s IVAs use, engaging instead in continuous listening. Though potentially useful, the continuous recording and analysis of speech can pose a serious threat to individuals’ privacy. Ideally, users would be able to limit or control the types of information such devices have access to. But existing technical approaches are insufficient for enforcing any such restrictions. To begin formulating a solution, we develop a system- atic methodology for studying continuous-listening applications and survey architectural approaches to designing a system that enhances privacy while preserving the benefits of always-listening assistants.
Many consumers now rely on different forms of voice assistants, both stand-alone devices and those built into smartphones. Currently, these systems react to specific wake-words, such as "Alexa," "Siri," or "Ok Google." However, with advancements in natural language processing, the next generation of voice assistants could instead always listen to the acoustic environment and proactively provide services and recommendations based on conversations without being explicitly invoked. We refer to such devices as "always listening voice assistants" and explore expectations around their potential use. In this paper, we report on a 178-participant survey investigating the potential services people anticipate from such a device and how they feel about sharing their data for these purposes. Our findings reveal that participants can anticipate a wide range of services pertaining to a conversation; however, most of the services are very similar to those that existing voice assistants currently provide with explicit commands. Participants are more likely to consent to share a conversation when they do not find it sensitive, they are comfortable with the service and find it beneficial, and when they already own a stand-alone voice assistant. Based on our findings we discuss the privacy challenges in designing an always-listening voice assistant.
The Security Behavior Intentions Scale (SeBIS) measures the computer security attitudes of end-users. Because intentions are a prerequisite for planned behavior, the scale could therefore be useful for predicting users' computer security behaviors. We performed three experiments to identify correlations between each of SeBIS's four sub-scales and relevant computer security behaviors. We found that testing high on the awareness sub-scale correlated with correctly identifying a phishing website; testing high on the passwords sub-scale correlated with creating passwords that could not be quickly cracked; testing high on the updating sub-scale correlated with applying software updates; and testing high on the securement sub-scale correlated with smartphone lock screen usage (e.g., PINs). Our results indicate that SeBIS predicts certain computer security behaviors and that it is a reliable and valid tool that should be used in future research.
Computer security problems often occur when there are disconnects between users’ understanding of their role in computer security and what is expected of them. To help users make good security decisions more easily, we need insights into the challenges they face in their daily computer usage. We built and deployed the Security Behavior Observatory (SBO) to collect data on user behavior and machine configurations from participants’ home computers. Combining SBO data with user interviews, this paper presents a qualitative study comparing users’ attitudes, behaviors, and understanding of computer security to the actual states of their computers. Qualitative inductive thematic analysis of the interviews produced “engagement” as the overarching theme, whereby participants with greater engagement in computer security and maintenance did not necessarily have more secure computer states. Thus, user engagement alone may not be predictive of computer security. We identify several other themes that inform future directions for better design and research into security interventions. Our findings emphasize the need for better understanding of how users’ computers get infected, so that we can more effectively design user-centered mitigations.
Risk homeostasis theory claims that individuals adjust their behaviors in response to changing variables to keep what they perceive as a constant accepted level of risk [8]. Risk homeostasis theory is used to explain why drivers may drive faster when wearing seatbelts. Here we explore whether risk homeostasis theory applies to end-user security behaviors. We use observed data from over 200 participants in a longitudinal in-situ study as well as survey data from 249 users to attempt to determine how user security behaviors and attitudes are affected by the presence or absence of antivirus software. If risk compensation is occurring, users might be expected to behave more dangerously in some ways when antivirus is present. Some of our preliminary data suggests that risk compensation may be occurring, but additional work with larger samples is needed.