Biblio

Filters: Author is Zhang, Mingyue  [Clear All Filters]
2022-02-04
Zhang, Mingyue.  2021.  System Component-Level Self-Adaptations for Security via Bayesian Games. 2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion). :102–104.

Security attacks present unique challenges to self-adaptive system design due to the adversarial nature of the environment. However, modeling the system as a single player, as done in prior works in security domain, is insufficient for the system under partial compromise and for the design of fine-grained defensive strategies where the rest of the system with autonomy can cooperate to mitigate the impact of attacks. To deal with such issues, we propose a new self-adaptive framework incorporating Bayesian game and model the defender (i.e., the system) at the granularity of components in system architecture. The system architecture model is translated into a Bayesian multi-player game, where each component is modeled as an independent player while security attacks are encoded as variant types for the components. The defensive strategy for the system is dynamically computed by solving the pure equilibrium to achieve the best possible system utility, improving the resiliency of the system against security attacks.

2023-01-30
Li, Nianyu, Zhang, Mingyue, Kang, Eunsuk, Garlan, David.  2021.  Engineering Secure Self-adaptive Systems with Bayesian Games. Fundamental Approaches to Software Engineering - 24th International Conference, FASE 2021.

Security attacks present unique challenges to self-adaptive system design due to the adversarial nature of the environment. Game theory approaches have been explored in security to model malicious behaviors and design reliable defense for the system in a mathematically grounded manner. However, modeling the system as a single player, as done in prior works, is insufficient for the system under partial compromise and for the design of fine-grained defensive strategies where the rest of the system with autonomy can cooperate to mitigate the impact of attacks. To deal with such issues, we propose a new self-adaptive framework incorporating Bayesian game theory and model the defender (i.e., the system) at the granularity of components. Under security attacks, the architecture model of the system is translated into a Bayesian multi-player game, where each component is explicitly modeled as an independent player while security attacks are encoded as variant types for the components. The optimal defensive strategy for the system is dynamically computed by solving the pure equilibrium (i.e., adaptation response) to achieve the best possible system utility, improving the resiliency of the system against security attacks. We illustrate our approach using an example involving load balancing and a case study on inter-domain routing.

2021-05-13
Zhang, Mingyue, Zhou, Junlong, Cao, Kun, Hu, Shiyan.  2020.  Trusted Anonymous Authentication For Vehicular Cyber-Physical Systems. 2020 International Conferences on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :37—44.
In vehicular cyber-physical systems, the mounted cameras on the vehicles, together with the fixed roadside cameras, can produce pictorial data for multiple purposes. In this process, ensuring the security and privacy of vehicles while guaranteeing efficient data transmission among vehicles is critical. This motivates us to propose a trusted anonymous authentication scheme for vehicular cyber-physical systems and Internet-of-Things. Our scheme is designed based on a three-tier architecture which contains cloud layer, fog layer, and user layer. It utilizes bilinear-free certificateless signcryption to realize a secure and trusted anonymous authentication efficiently. We verify its effectiveness through theoretical analyses in terms of correctness, security, and efficiency. Furthermore, our simulation results demonstrate that the communication overhead, the computation overhead, and the packet loss rate of the proposed scheme are significantly better than those of the state-of-the-art techniques. Particularly, the proposed scheme can speed up the computation process at least 10× compared to all the state-of-the-art approaches.