Biblio
In recent years, we have seen an advent in software attestation defenses targeting embedded systems which aim to detect tampering with a device's running program. With a persistent threat of an increasingly powerful attacker with physical access to the device, attestation approaches have become more rooted into the device's hardware with some approaches even changing the underlying microarchitecture. These drastic changes to the hardware make the proposed defenses hard to apply to new systems. In this paper, we present and evaluate LAHEL as the means to study the implementation and pitfalls of a hardware-based attestation mechanism. We limit LAHEL to utilize existing technologies without demanding any hardware changes. We implement LAHEL as a hardware IP core which interfaces with the CoreSight Debug Architecture available in modern ARM cores. We show how LAHEL can be integrated to system on chip designs allowing for microcontroller vendors to easily add our defense into their products. We present and test our prototype on a Zynq-7000 SoC, evaluating the security of LAHEL against powerful time-of-check-time-of-use (TOCTOU) attacks, while demonstrating improved performance over existing attestation schemes.