Biblio

Filters: Author is Pradhan, Ankit  [Clear All Filters]
2021-10-12
Sethi, Kamalakanta, Pradhan, Ankit, Bera, Padmalochan.  2020.  Attribute-Based Data Security with Obfuscated Access Policy for Smart Grid Applications. 2020 International Conference on COMmunication Systems NETworkS (COMSNETS). :503–506.
Smart grid employs intelligent transmission and distribution networks for effective and reliable delivery of electricity. It uses fine-grained electrical measurements to attain optimized reliability and stability by sharing these measurements among different entities of energy management systems of the grid. There are many stakeholders like users, phasor measurement units (PMU), and other entities, with changing requirements involved in the sharing of the data. Therefore, data security plays a vital role in the correct functioning of a power grid network. In this paper, we propose an attribute-based encryption (ABE) for secure data sharing in Smart Grid architectures as ABE enables efficient and secure access control. Also, the access policy is obfuscated to preserve privacy. We use Linear Secret Sharing (LSS) Scheme for supporting any monotone access structures, thereby enhancing the expressiveness of access policies. Finally, we also analyze the security, access policy privacy and collusion resistance properties along with efficiency analysis of our cryptosystem.
2021-05-25
Pradhan, Ankit, R., Punith., Sethi, Kamalakanta, Bera, Padmalochan.  2020.  Smart Grid Data Security using Practical CP-ABE with Obfuscated Policy and Outsourcing Decryption. 2020 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA). :1–8.
Smart grid consists of multiple different entities related to various energy management systems which share fine-grained energy measurements among themselves in an optimal and reliable manner. Such delivery is achieved through intelligent transmission and distribution networks composed of various stakeholders like Phasor Measurement Units (PMUs), Master and Remote Terminal Units (MTU and RTU), Storage Centers and users in power utility departments subject to volatile changes in requirements. Hence, secure accessibility of data becomes vital in the context of efficient functioning of the smart grid. In this paper, we propose a practical attribute-based encryption scheme for securing data sharing and data access in Smart Grid architectures with the added advantage of obfuscating the access policy. This is aimed at preserving data privacy in the context of competing smart grid operators. We build our scheme on Linear Secret Sharing (LSS) Schemes for supporting any monotone access structures and thus enhancing the expressiveness of access policies. Lastly, we analyze the security, access policy privacy and collusion resistance properties of our cryptosystem and provide an efficiency comparison as well as experimental analysis using the Charm-Crypto framework to validate the proficiency of our proposed solution.