Biblio
In this paper, we introduce and experimentally validate a sampling-based planning algorithm for quasi-static manipulation of a planar elastic rod. Our algorithm is an immediate consequence of deriving a global coordinate chart of finite dimension that suffices to describe all possible configurations of the rod that can be placed in static equilibrium by fixing the position and orientation of each end. Hardware experiments confirm this derivation in the case where the “rod” is a thin, flexible strip of metal that has a fixed base and that is held at the other end by an industrial robot. We show an example in which a path of the robot that was planned by our algorithm causes the metal strip to move between given start and goal configurations while remaining in quasi-static equilibrium.