Biblio

Filters: Author is Lee, Hyunjun  [Clear All Filters]
2022-12-20
Hassanshahi, Behnaz, Lee, Hyunjun, Krishnan, Paddy.  2022.  Gelato: Feedback-driven and Guided Security Analysis of Client-side Web Applications. 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). :618–629.
Modern web applications are getting more sophisticated by using frameworks that make development easy, but pose challenges for security analysis tools. New analysis techniques are needed to handle such frameworks that grow in number and popularity. In this paper, we describe Gelato that addresses the most crucial challenges for a security-aware client-side analysis of highly dynamic web applications. In particular, we use a feedback-driven and state-aware crawler that is able to analyze complex framework-based applications automatically, and is guided to maximize coverage of security-sensitive parts of the program. Moreover, we propose a new lightweight client-side taint analysis that outperforms the state-of-the-art tools, requires no modification to browsers, and reports non-trivial taint flows on modern JavaScript applications. Gelato reports vulnerabilities with higher accuracy than existing tools and achieves significantly better coverage on 12 applications of which three are used in production.
ISSN: 1534-5351
2021-06-28
Lee, Hyunjun, Bere, Gomanth, Kim, Kyungtak, Ochoa, Justin J., Park, Joung-hu, Kim, Taesic.  2020.  Deep Learning-Based False Sensor Data Detection for Battery Energy Storage Systems. 2020 IEEE CyberPELS (CyberPELS). :1–6.
Battery energy storage systems are facing risks of unreliable battery sensor data which might be caused by sensor faults in an embedded battery management system, communication failures, and even cyber-attacks. It is crucial to evaluate the trustworthiness of battery sensor data since inaccurate sensor data could lead to not only serious damages to battery energy storage systems, but also threaten the overall reliability of their applications (e.g., electric vehicles or power grids). This paper introduces a battery sensor data trust framework enabling detecting unreliable data using a deep learning algorithm. The proposed sensor data trust mechanism could potentially improve safety and reliability of the battery energy storage systems. The proposed deep learning-based battery sensor fault detection algorithm is validated by simulation studies using a convolutional neural network.