Biblio
Filters: Author is FALL, Doudou [Clear All Filters]
Solving the Interdependency Problem: A Secure Virtual Machine Allocation Method Relying on the Attacker’s Efficiency and Coverage. 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID). :440—449.
.
2020. Cloud computing dominates the information communication and technology landscape despite the presence of lingering security issues such as the interdependency problem. The latter is a co-residence conundrum where the attacker successfully compromises his target virtual machine by first exploiting the weakest (in terms of security) virtual machine that is hosted in the same server. To tackle this issue, we propose a novel virtual machine allocation policy that is based on the attacker's efficiency and coverage. By default, our allocation policy considers all legitimate users as attackers and then proceeds to host the users' virtual machines to the server where their efficiency and/or coverage are the smallest. Our simulation results show that our proposal performs better than the existing allocation policies that were proposed to tackle the same issue, by reducing the attacker's possibilities to zero and by using between 30 - 48% less hosts.
Long Short-Term Memory-Based Intrusion Detection System for In-Vehicle Controller Area Network Bus. 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). :10–17.
.
2020. The Controller Area Network (CAN) bus system works inside connected cars as a central system for communication between electronic control units (ECUs). Despite its central importance, the CAN does not support an authentication mechanism, i.e., CAN messages are broadcast without basic security features. As a result, it is easy for attackers to launch attacks at the CAN bus network system. Attackers can compromise the CAN bus system in several ways: denial of service, fuzzing, spoofing, etc. It is imperative to devise methodologies to protect modern cars against the aforementioned attacks. In this paper, we propose a Long Short-Term Memory (LSTM)-based Intrusion Detection System (IDS) to detect and mitigate the CAN bus network attacks. We first inject attacks at the CAN bus system in a car that we have at our disposal to generate the attack dataset, which we use to test and train our model. Our results demonstrate that our classifier is efficient in detecting the CAN attacks. We achieved a detection accuracy of 99.9949%.