Biblio

Filters: Author is Aigner, Andreas  [Clear All Filters]
2022-04-01
Aigner, Andreas, Khelil, Abdelmajid.  2021.  A Security Scoring Framework to Quantify Security in Cyber-Physical Systems. 2021 4th IEEE International Conference on Industrial Cyber-Physical Systems (ICPS). :199—206.
The need to achieve a suitable level of security in Cyber-Physical Systems (CPS) presents a major challenge for engineers. The unpredictable communication of highly constrained, but safety-relevant systems in a heterogeneous environment, significantly impacts the number and severity of vulnerabilities. Consequently, if security-related weaknesses can successfully be exploited by attackers, the functionality of critical infrastructure could be denied or malfunction. This might consequently threaten life or leak sensitive information. A toolkit to quantitatively express security is essential for security engineers in order to define security-enhancing measurements. For this purpose, security scoring frameworks, like the established Common Vulnerability Scoring System can be used. However, existing security scoring frameworks may not be able to handle the proposed challenges and characteristics of CPS. Therefore, in this work, we aim to elaborate a security scoring system that is tailored to the needs of CPS. In detail, we analyze security on a System-of-Systems level, while considering multiple attacks, as well as potential side effects to other security-related objects. The positive effects of integrated mitigation concepts should also be abbreviated by our proposed security score. Additionally, we generate the security score for interacting AUTOSAR platforms in a highly-connected Vehicle-to-everything (V2x) environment. We refer to this highly relevant use case scenario to underline the benefits of our proposed scoring framework and to prove its effectiveness in CPS.
2021-07-28
Aigner, Andreas, Khelil, Abdelmajid.  2020.  A Semantic Model-Based Security Engineering Framework for Cyber-Physical Systems. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1826—1833.
The coupling of safety-relevant embedded- and cyber-space components to build Cyber-Physical Systems (CPS) extends the functionality and quality in many business domains, while also creating new ones. Prime examples like Internet of Things and Industry 4.0 enable new technologies and extend the service capabilities of physical entities by building a universe of connected devices. In addition to higher complexity, the coupling of these heterogeneous systems results in many new challenges, which should be addressed by engineers and administrators. Here, security represents a major challenge, which may be well addressed in cyber-space engineering, but less in embedded system or CPS design. Although model-based engineering provides significant benefits for system architects, like reducing complexity and automated analysis, as well as being considered as standard methodology in embedded systems design, the aspect of security may not have had a major role in traditional engineering concepts. Especially the characteristics of CPS, as well as the coupling of safety-relevant (physical) components with high-scalable entities of the cyber-space domain have an enormous impact on the overall level of security, based on the introduced side effects and uncertainties. Therefore, we aim to define a model-based security-engineering framework, which is tailored to the needs of CPS engineers. Hereby, we focus on the actual modeling process, the evaluation of security, as well as quantitatively expressing security of a deployed CPS. Overall and in contrast to other approaches, we shift the engineering concepts on a semantic level, which allows to address the proposed challenges in CPS in the most efficient way.
Aigner, Andreas, Khelil, Abdelmajid.  2020.  A Scoring System to Efficiently Measure Security in Cyber-Physical Systems. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1141—1145.
The importance of Cyber-Physical Systems (CPS) gains more and more weight in our daily business and private life. Although CPS build the backbone for major trends, like Industry 4.0 and connected vehicles, they also propose many new challenges. One major challenge can be found in achieving a high level of security within such highly connected environments, in which an unpredictable number of heterogeneous systems with often-distinctive characteristics interact with each other. In order to develop high-level security solutions, system designers must eventually know the current level of security of their specification. To this end, security metrics and scoring frameworks are essential, as they quantitatively express security of a given design or system. However, existing solutions may not be able to handle the proposed challenges of CPS, as they mainly focus on one particular system and one specific attack. Therefore, we aim to elaborate a security scoring mechanism, which can efficiently be used in CPS, while considering all essential information. We break down each system within the CPS into its core functional blocks and analyze a variety of attacks in terms of exploitability, scalability of attacks, as well as potential harm to targeted assets. With this approach, we get an overall assessment of security for the whole CPS, as it integrates the security-state of all interacting systems. This allows handling the presented complexity in CPS in a more efficient way, than existing solutions.