Biblio

Filters: Author is Babar, M. Ali  [Clear All Filters]
2022-02-24
Duan, Xuanyu, Ge, Mengmeng, Minh Le, Triet Huynh, Ullah, Faheem, Gao, Shang, Lu, Xuequan, Babar, M. Ali.  2021.  Automated Security Assessment for the Internet of Things. 2021 IEEE 26th Pacific Rim International Symposium on Dependable Computing (PRDC). :47–56.
Internet of Things (IoT) based applications face an increasing number of potential security risks, which need to be systematically assessed and addressed. Expert-based manual assessment of IoT security is a predominant approach, which is usually inefficient. To address this problem, we propose an automated security assessment framework for IoT networks. Our framework first leverages machine learning and natural language processing to analyze vulnerability descriptions for predicting vulnerability metrics. The predicted metrics are then input into a two-layered graphical security model, which consists of an attack graph at the upper layer to present the network connectivity and an attack tree for each node in the network at the bottom layer to depict the vulnerability information. This security model automatically assesses the security of the IoT network by capturing potential attack paths. We evaluate the viability of our approach using a proof-of-concept smart building system model which contains a variety of real-world IoT devices and poten-tial vulnerabilities. Our evaluation of the proposed framework demonstrates its effectiveness in terms of automatically predicting the vulnerability metrics of new vulnerabilities with more than 90% accuracy, on average, and identifying the most vulnerable attack paths within an IoT network. The produced assessment results can serve as a guideline for cybersecurity professionals to take further actions and mitigate risks in a timely manner.
2021-08-11
Aljedaani, Bakheet, Ahmad, Aakash, Zahedi, Mansooreh, Babar, M. Ali.  2020.  An Empirical Study on Developing Secure Mobile Health Apps: The Developers' Perspective. 2020 27th Asia-Pacific Software Engineering Conference (APSEC). :208—217.
Mobile apps exploit embedded sensors and wireless connectivity of a device to empower users with portable computations, context-aware communication, and enhanced interaction. Specifically, mobile health apps (mHealth apps for short) are becoming integral part of mobile and pervasive computing to improve the availability and quality of healthcare services. Despite the offered benefits, mHealth apps face a critical challenge, i.e., security of health-critical data that is produced and consumed by the app. Several studies have revealed that security specific issues of mHealth apps have not been adequately addressed. The objectives of this study are to empirically (a) investigate the challenges that hinder development of secure mHealth apps, (b) identify practices to develop secure apps, and (c) explore motivating factors that influence secure development. We conducted this study by collecting responses of 97 developers from 25 countries - across 06 continents - working in diverse teams and roles to develop mHealth apps for Android, iOS, and Windows platform. Qualitative analysis of the survey data is based on (i) 8 critical challenges, (ii) taxonomy of best practices to ensure security, and (iii) 6 motivating factors that impact secure mHealth apps. This research provides empirical evidence as practitioners' view and guidelines to develop emerging and next generation of secure mHealth apps.