Biblio

Filters: Author is Rahman, Mohammad A.  [Clear All Filters]
2022-04-18
Kholidy, Hisham A., Karam, Andrew, Sidoran, James L., Rahman, Mohammad A..  2021.  5G Core Security in Edge Networks: A Vulnerability Assessment Approach. 2021 IEEE Symposium on Computers and Communications (ISCC). :1–6.
The 5G technology will play a crucial role in global economic growth through numerous industrial developments. However, it is essential to ensure the security of these developed systems, while 5G brings unique security challenges. This paper contributes explicitly to the need for an effective Vulnerability Assessment Approach (VAA) to identify and assess the vulnerabilities in 5G networks in an accurate, salable, and dynamic way. The proposed approach develops an optimized mechanism based on the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) to analyze the vulnerabilities in 5G Edge networks from the attacker perspective while considering the dynamic and scalable Edge properties. Furthermore, we introduce a cloud-based 5G Edge security testbed to test and evaluate the accuracy, scalability, and performance of the proposed VAA.
2021-08-11
Saputro, Nico, Tonyali, Samet, Aydeger, Abdullah, Akkaya, Kemal, Rahman, Mohammad A., Uluagac, Selcuk.  2020.  A Review of Moving Target Defense Mechanisms for Internet of Things Applications. Modeling and Design of Secure Internet of Things. :563–614.
The chapter presents a review of proactive Moving Target Defense (MTD) paradigm and investigates the feasibility and potential of specific MTD approaches for the resource‐constrained Internet of Things (IoT) applications. The aim is not only to provide taxonomy of various MTD approaches but also to advocate MTD techniques in the dynamic network domain in conjunction with the emerging Software Defined Networking (SDN) for more effective proactive IoT defense. The Internet of Battlefield Things (IoBT) and Industrial IoT (IIoT), which subject to more attacks, are identified as two critical IoT domains that can reap from the SDN‐based MTD approaches. Finally, the chapter also discusses potential future research challenges of the MTD approaches in the IoT domain.