Biblio

Filters: Author is Zhang, Xing  [Clear All Filters]
2023-01-13
Zhang, Xing, Chen, Jiongyi, Feng, Chao, Li, Ruilin, Diao, Wenrui, Zhang, Kehuan, Lei, Jing, Tang, Chaojing.  2022.  Default: Mutual Information-based Crash Triage for Massive Crashes. 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE). :635—646.
With the considerable success achieved by modern fuzzing in-frastructures, more crashes are produced than ever before. To dig out the root cause, rapid and faithful crash triage for large numbers of crashes has always been attractive. However, hindered by the practical difficulty of reducing analysis imprecision without compromising efficiency, this goal has not been accomplished. In this paper, we present an end-to-end crash triage solution Default, for accurately and quickly pinpointing unique root cause from large numbers of crashes. In particular, we quantify the “crash relevance” of program entities based on mutual information, which serves as the criterion of unique crash bucketing and allows us to bucket massive crashes without pre-analyzing their root cause. The quantification of “crash relevance” is also used in the shortening of long crashing traces. On this basis, we use the interpretability of neural networks to precisely pinpoint the root cause in the shortened traces by evaluating each basic block's impact on the crash label. Evaluated with 20 programs with 22216 crashes in total, Default demonstrates remarkable accuracy and performance, which is way beyond what the state-of-the-art techniques can achieve: crash de-duplication was achieved at a super-fast processing speed - 0.017 seconds per crashing trace, without missing any unique bugs. After that, it identifies the root cause of 43 unique crashes with no false negatives and an average false positive rate of 9.2%.
2021-09-07
Zhang, Xing, Cui, Xiaotong, Cheng, Kefei, Zhang, Liang.  2020.  A Convolutional Encoder Network for Intrusion Detection in Controller Area Networks. 2020 16th International Conference on Computational Intelligence and Security (CIS). :366–369.
Integrated with various electronic control units (ECUs), vehicles are becoming more intelligent with the assistance of essential connections. However, the interaction with the outside world raises great concerns on cyber-attacks. As a main standard for in-vehicle network, Controller Area Network (CAN) does not have any built-in security mechanisms to guarantee a secure communication. This increases risks of denial of service, remote control attacks by an attacker, posing serious threats to underlying vehicles, property and human lives. As a result, it is urgent to develop an effective in-vehicle network intrusion detection system (IDS) for better security. In this paper, we propose a Feature-based Sliding Window (FSW) to extract the feature of CAN Data Field and CAN IDs. Then we construct a convolutional encoder network (CEN) to detect network intrusion of CAN networks. The proposed FSW-CEN method is evaluated on real-world datasets. The experimental results show that compared to traditional data processing methods and convolutional neural networks, our method is able to detect attacks with a higher accuracy in terms of detection accuracy and false negative rate.