Biblio
Filters: Author is Wang, Yuchen [Clear All Filters]
CPSD: A data security deletion algorithm based on copyback command. 2022 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :1036—1041.
.
2022. Data secure deletion operation in storage media is an important function of data security management. The internal physical properties of SSDs are different from hard disks, and data secure deletion of disks can not apply to SSDs directly. Copyback operation is used to improve the data migration performance of SSDs but is rarely used due to error accumulation issue. We propose a data securely deletion algorithm based on copyback operation, which improves the efficiency of data secure deletion without affecting the reliability of data. First, this paper proves that the data secure delete operation takes a long time on the channel bus, increasing the I/O overhead, and reducing the performance of the SSDs. Secondly, this paper designs an efficient data deletion algorithm, which can process read requests quickly. The experimental results show that the proposed algorithm can reduce the response time of read requests by 21% and the response time of delete requests by 18.7% over the existing algorithm.
Modular Security Analysis of OAuth 2.0 in the Three-Party Setting. 2020 IEEE European Symposium on Security and Privacy (EuroS P). :276–293.
.
2020. OAuth 2.0 is one of the most widely used Internet protocols for authorization/single sign-on (SSO) and is also the foundation of the new SSO protocol OpenID Connect. Due to its complexity and its flexibility, it is difficult to comprehensively analyze the security of the OAuth 2.0 standard, yet it is critical to obtain practical security guarantees for OAuth 2.0. In this paper, we present the first computationally sound security analysis of OAuth 2.0. First, we introduce a new primitive, the three-party authenticated secret distribution (3P-ASD for short) protocol, which plays the role of issuing the secret and captures the token issue process of OAuth 2.0. As far as we know, this is the first attempt to formally abstract the authorization technology into a general primitive and then define its security. Then, we present a sufficiently rich three-party security model for OAuth protocols, covering all kinds of authorization flows, providing reasonably strong security guarantees and moreover capturing various web features. To confirm the soundness of our model, we also identify the known attacks against OAuth 2.0 in the model. Furthermore, we prove that two main modes of OAuth 2.0 can achieve our desired security by abstracting the token issue process into a 3P-ASD protocol. Our analysis is not only modular which can reflect the compositional nature of OAuth 2.0, but also fine-grained which can evaluate how the intermediate parameters affect the final security of OAuth 2.0.