Biblio

Filters: Author is Raich, Philipp  [Clear All Filters]
2022-12-06
Raich, Philipp, Kastner, Wolfgang.  2022.  Failure Detectors for 6LoWPAN: Model and Implementation. 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET). :1-6.

Consensus is a basic building block in distributed systems for a myriad of related problems that involve agreement. For asynchronous networks, consensus has been proven impossible, and is well known as Augean task. Failure Detectors (FDs) have since emerged as a possible remedy, able to solve consensus in asynchronous systems under certain assumptions. With the increasing use of asynchronous, wireless Internet of Things (IoT) technologies, such as IEEE 802.15.4/6LoWPAN, the demand of applications that require some form of reliability and agreement is on the rise. What was missing so far is an FD that can operate under the tight constraints offered by Low Power and Lossy Networks (LLNs) without compromising the efficiency of the network. We present 6LoFD, an FD specifically aimed at energy and memory efficient operation in small scale, unreliable networks, and evaluate its working principles by using an ns-3 implementation of 6LoFD.

2021-11-29
Raich, Philipp, Kastner, Wolfgang.  2021.  A Computational Model for 6LoWPAN Multicast Routing. 2021 17th IEEE International Conference on Factory Communication Systems (WFCS). :143–146.
Reliable group communication is an important cornerstone for various applications in the domain of Industrial Internet of Things (IIoT). Yet, despite various proposals, state-of- the-art (open) protocol stacks for IPv6-enabled Low Power and Lossy Networks (LLNs) have little to offer, regarding standardized or agreed-upon protocols for correct multicast routing, not to mention reliable multicast. We present an informal computational model, which allows us to analyze the respective candidates for multicast routing. Further, we focus on the IEEE 802.15.4/6LoWPAN stack and discuss prominent multicast routing protocols and how they fit into this model.