Biblio

Filters: Author is Zhang, Shengli  [Clear All Filters]
2022-04-13
Liu, Ling, Zhang, Shengli, Ling, Cong.  2021.  Set Reconciliation for Blockchains with Slepian-Wolf Coding: Deletion Polar Codes. 2021 13th International Conference on Wireless Communications and Signal Processing (WCSP). :1–5.
In this paper, we propose a polar coding based scheme for set reconciliation between two network nodes. The system is modeled as a well-known Slepian-Wolf setting induced by a fixed number of deletions. The set reconciliation process is divided into two phases: 1) a deletion polar code is employed to help one node to identify the possible deletion indices, which may be larger than the number of genuine deletions; 2) a lossless compression polar code is then designed to feedback those indices with minimum overhead. Our scheme can be viewed as a generalization of polar codes to some emerging network-based applications such as the package synchronization in blockchains. The total overhead is linear to the number of packages, and immune to the package size.
2021-11-30
Li, Gangqiang, Wu, Sissi Xiaoxiao, Zhang, Shengli, Li, Qiang.  2020.  Detect Insider Attacks Using CNN in Decentralized Optimization. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :8758–8762.
This paper studies the security issue of a gossip-based distributed projected gradient (DPG) algorithm, when it is applied for solving a decentralized multi-agent optimization. It is known that the gossip-based DPG algorithm is vulnerable to insider attacks because each agent locally estimates its (sub)gradient without any supervision. This work leverages the convolutional neural network (CNN) to perform the detection and localization of the insider attackers. Compared to the previous work, CNN can learn appropriate decision functions from the original state information without preprocessing through artificially designed rules, thereby alleviating the dependence on complex pre-designed models. Simulation results demonstrate that the proposed CNN-based approach can effectively improve the performance of detecting and localizing malicious agents, as compared with the conventional pre-designed score-based model.