Biblio

Filters: Author is Wohlrab, Rebekka  [Clear All Filters]
2023-01-30
Wohlrab, Rebekka, Cámara, Javier, Garlan, David, Schmerl, Bradley.  2022.  Explaining quality attribute tradeoffs in automated planning for self-adaptive systems. Journal of Systems and Software. 198

Self-adaptive systems commonly operate in heterogeneous contexts and need to consider multiple quality attributes. Human stakeholders often express their quality preferences by defining utility functions, which are used by self-adaptive systems to automatically generate adaptation plans. However, the adaptation space of realistic systems is large and it is obscure how utility functions impact the generated adaptation behavior, as well as structural, behavioral, and quality constraints. Moreover, human stakeholders are often not aware of the underlying tradeoffs between quality attributes. To address this issue, we present an approach that uses machine learning techniques (dimensionality reduction, clustering, and decision tree learning) to explain the reasoning behind automated planning. Our approach focuses on the tradeoffs between quality attributes and how the choice of weights in utility functions results in different plans being generated. We help humans understand quality attribute tradeoffs, identify key decisions in adaptation behavior, and explore how differences in utility functions result in different adaptation alternatives. We present two systems to demonstrate the approach’s applicability and consider its potential application to 24 exemplar self-adaptive systems. Moreover, we describe our assessment of the tradeoff between the information reduction and the amount of explained variance retained by the results obtained with our approach.

Cámara, Javier, Wohlrab, Rebekka, Garlan, David, Schmerl, Bradley.  2022.  ExTrA: Explaining architectural design tradeoff spaces via dimensionality reduction. Journal of Systems and Software. 198

In software design, guaranteeing the correctness of run-time system behavior while achieving an acceptable balance among multiple quality attributes remains a challenging problem. Moreover, providing guarantees about the satisfaction of those requirements when systems are subject to uncertain environments is even more challenging. While recent developments in architectural analysis techniques can assist architects in exploring the satisfaction of quantitative guarantees across the design space, existing approaches are still limited because they do not explicitly link design decisions to satisfaction of quality requirements. Furthermore, the amount of information they yield can be overwhelming to a human designer, making it difficult to see the forest for the trees. In this paper we present ExTrA (Explaining Tradeoffs of software Architecture design spaces), an approach to analyzing architectural design spaces that addresses these limitations and provides a basis for explaining design tradeoffs. Our approach employs dimensionality reduction techniques employed in machine learning pipelines like Principal Component Analysis (PCA) and Decision Tree Learning (DTL) to enable architects to understand how design decisions contribute to the satisfaction of extra-functional properties across the design space. Our results show feasibility of the approach in two case studies and evidence that combining complementary techniques like PCA and DTL is a viable approach to facilitate comprehension of tradeoffs in poorly-understood design spaces.

2022-01-12
Wohlrab, Rebekka, Garlan, David.  2021.  Defining Utility Functions for Multi-Stakeholder Self-Adaptive Systems. REFSQ 2021: Requirements Engineering: Foundation for Software Quality.
For realistic self-adaptive systems, multiple quality attributes need to be considered and traded off against each other. These quality attributes are commonly encoded in a utility function, for instance, a weighted sum of relevant objectives. [Question/problem:] The research agenda for requirements engineering for self-adaptive systems has raised the need for decision-making techniques that consider the trade-offs and priorities of multiple objectives. Human stakeholders need to be engaged in the decision-making process so that the relative importance of each objective can be correctly elicited. [Principal ideas/results:] This research preview paper presents a method that supports multiple stakeholders in prioritizing relevant quality attributes, negotiating priorities to reach an agreement, and giving input to define utility functions for self-adaptive systems. [Contribution:] The proposed method constitutes a lightweight solution for utility function definition. It can be applied by practitioners and researchers who aim to develop self-adaptive systems that meet stakeholders’ requirements. We present details of our plan to study the application of our method using a case study.