Biblio

Filters: Author is Wang, Jie  [Clear All Filters]
2023-07-21
Wang, Juan, Ma, Chenjun, Li, Ziang, Yuan, Huanyu, Wang, Jie.  2022.  ProcGuard: Process Injection Behaviours Detection Using Fine-grained Analysis of API Call Chain with Deep Learning. 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :778—785.

New malware increasingly adopts novel fileless techniques to evade detection from antivirus programs. Process injection is one of the most popular fileless attack techniques. This technique makes malware more stealthy by writing malicious code into memory space and reusing the name and port of the host process. It is difficult for traditional security software to detect and intercept process injections due to the stealthiness of its behavior. We propose a novel framework called ProcGuard for detecting process injection behaviors. This framework collects sensitive function call information of typical process injection. Then we perform a fine-grained analysis of process injection behavior based on the function call chain characteristics of the program, and we also use the improved RCNN network to enhance API analysis on the tampered memory segments. We combine API analysis with deep learning to determine whether a process injection attack has been executed. We collect a large number of malicious samples with process injection behavior and construct a dataset for evaluating the effectiveness of ProcGuard. The experimental results demonstrate that it achieves an accuracy of 81.58% with a lower false-positive rate compared to other systems. In addition, we also evaluate the detection time and runtime performance loss metrics of ProcGuard, both of which are improved compared to previous detection tools.

2022-08-26
Zhang, Haichun, Huang, Kelin, Wang, Jie, Liu, Zhenglin.  2021.  CAN-FT: A Fuzz Testing Method for Automotive Controller Area Network Bus. 2021 International Conference on Computer Information Science and Artificial Intelligence (CISAI). :225–231.
The Controller Area Network (CAN) bus is the de-facto standard for connecting the Electronic Control Units (ECUs) in automobiles. However, there are serious cyber-security risks due to the lack of security mechanisms. In order to mine the vulnerabilities in CAN bus, this paper proposes CAN-FT, a fuzz testing method for automotive CAN bus, which uses a Generative Adversarial Network (GAN) based fuzzy message generation algorithm and the Adaptive Boosting (AdaBoost) based anomaly detection mechanism to capture the abnormal states of CAN bus. Experimental results on a real-world vehicle show that CAN-FT can find vulnerabilities more efficiently and comprehensively.
2022-03-01
Wang, Jie, Jia, Zhiyuan, Yin, Hoover H. F., Yang, Shenghao.  2021.  Small-Sample Inferred Adaptive Recoding for Batched Network Coding. 2021 IEEE International Symposium on Information Theory (ISIT). :1427–1432.
Batched network coding is a low-complexity network coding solution to feedbackless multi-hop wireless packet network transmission with packet loss. The data to be transmitted is encoded into batches where each of which consists of a few coded packets. Unlike the traditional forwarding strategy, the intermediate network nodes have to perform recoding, which generates recoded packets by network coding operations restricted within the same batch. Adaptive recoding is a technique to adapt the fluctuation of packet loss by optimizing the number of recoded packets per batch to enhance the throughput. The input rank distribution, which is a piece of information regarding the batches arriving at the node, is required to apply adaptive recoding. However, this distribution is not known in advance in practice as the incoming link's channel condition may change from time to time. On the other hand, to fully utilize the potential of adaptive recoding, we need to have a good estimation of this distribution. In other words, we need to guess this distribution from a few samples so that we can apply adaptive recoding as soon as possible. In this paper, we propose a distributionally robust optimization for adaptive recoding with a small-sample inferred prediction of the input rank distribution. We develop an algorithm to efficiently solve this optimization with the support of theoretical guarantees that our optimization's performance would constitute as a confidence lower bound of the optimal throughput with high probability.