Biblio
Filters: Author is Kfoury, Elie [Clear All Filters]
Implementation of Blockchain Domain Control Verification (B-DCV). 2022 45th International Conference on Telecommunications and Signal Processing (TSP). :17–22.
.
2022. Security in the communication systems rely mainly on a trusted Public Key Infrastructure (PKI) and Certificate Authorities (CAs). Besides the lack of automation, the complexity and the cost of assigning a signed certificate to a device, several allegations against CAs have been discovered, which has created trust issues in adopting this standard model for secure systems. The automation of the servers certificate assignment was achieved by the Automated Certificate Management Environment (ACME) method, but without confirming the trust of assigned certificate. This paper presents a complete tested and implemented solution to solve the trust of the Certificates provided to the servers by using the blockchain platform for certificate validation. The Blockchain network provides an immutable data store, holding the public keys of all domain names, while resolving the trust concerns by applying an automated Blockchain-based Domain Control Validation (B-DCV) for the server and client server verification. The evaluation was performed on the Ethereum Rinkeby testnet adopting the Proof of Authority (PoA) consensus algorithm which is an improved version of Proof of Stake (Po \$S\$) applied on Ethereum 2.0 providing superior performance compared to Ethereum 1.0.
A blockchain-based V2X communication system. 2021 44th International Conference on Telecommunications and Signal Processing (TSP). :208—213.
.
2021. The security proposed for Vehicle-to-Everything (V2X) systems in the European Union is specified in the ETSI Cooperative Intelligent Transport System (C-ITS) standards, and related documents are based on the trusted PKI/CAs. The C-ITS trust model platform comprises an EU Root CA and additional Root CAs run in Europe by member state authorities or private organizations offering certificates to individual users. A new method is described in this paper where the security in V2X is based on the Distributed Public Keystore (DPK) platform developed for Ethereum blockchain. The V2X security is considered as one application of the DPK platform. The DPK stores and distributes the vehicles, RSUs, or other C-ITS role-players’ public keys. It establishes a generic key exchange/ agreement scheme that provides mutual key, entity authentication, and distributing a session key between two peers. V2X communication based on this scheme can establish an end-to-end (e2e) secure session and enables vehicle authentication without the need for a vehicle certificate signed by a trusted Certificate Authority.
Dynamic Router's Buffer Sizing using Passive Measurements and P4 Programmable Switches. 2021 IEEE Global Communications Conference (GLOBECOM). :01–06.
.
2021. The router's buffer size imposes significant impli-cations on the performance of the network. Network operators nowadays configure the router's buffer size manually and stati-cally. They typically configure large buffers that fill up and never go empty, increasing the Round-trip Time (RTT) of packets significantly and decreasing the application performance. Few works in the literature dynamically adjust the buffer size, but are implemented only in simulators, and therefore cannot be tested and deployed in production networks with real traffic. Previous work suggested setting the buffer size to the Bandwidth-delay Product (BDP) divided by the square root of the number of long flows. Such formula is adequate when the RTT and the number of long flows are known in advance. This paper proposes a system that leverages programmable switches as passive instruments to measure the RTT and count the number of flows traversing a legacy router. Based on the measurements, the programmable switch dynamically adjusts the buffer size of the legacy router in order to mitigate the unnecessary large queuing delays. Results show that when the buffer is adjusted dynamically, the RTT, the loss rate, and the fairness among long flows are enhanced. Additionally, the Flow Completion Time (FCT) of short flows sharing the queue is greatly improved. The system can be adopted in campus, enterprise, and service provider networks, without the need to replace legacy routers.