Biblio
Filters: Author is Levi, Albert [Clear All Filters]
Scalable Wi-Fi Intrusion Detection for IoT Systems. 2021 11th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1—6.
.
2021. The pervasive and resource-constrained nature of Internet of Things (IoT) devices makes them attractive to be targeted by different means of cyber threats. There are a vast amount of botnets being deployed every day that aim to increase their presence on the Internet for realizing malicious activities with the help of the compromised interconnected devices. Therefore, monitoring IoT networks using intrusion detection systems is one of the major countermeasures against such threats. In this work, we present a machine learning based Wi-Fi intrusion detection system developed specifically for IoT devices. We show that a single multi-class classifier, which operates on the encrypted data collected from the wireless data link layer, is able to detect the benign traffic and six types of IoT attacks with an overall accuracy of 96.85%. Our model is a scalable one since there is no need to train different classifiers for different IoT devices. We also present an alternative attack classifier that outperforms the attack classification model which has been developed in an existing study using the same dataset.
Secure Matrix Operations for Machine Learning Classifications Over Encrypted Data in Post Quantum Industrial IoT. 2021 International Symposium on Networks, Computers and Communications (ISNCC). :1–8.
.
2021. We tackle the problem where a server owns a trained Machine Learning (ML) model and a client/user has an unclassified query that he wishes to classify in secure and private fashion using the server’s model. During the process the server learns nothing, while the user learns only his final classification and nothing else. Since several ML classification algorithms, such as deep neural networks, support vector machines-SVM (and hyperplane decisions in general), Logistic Regression, Naïve Bayes, etc., can be expressed in terms of matrix operations, initially we propose novel secure matrix operations as our building blocks. On top of them we build our secure and private ML classification algorithms under strict security and privacy requirements. As our underlying cryptographic primitives are shown to be resilient to quantum computer attacks, our algorithms are also suitable for the post-quantum world. Our theoretical analysis and extensive experimental evaluations show that our secure matrix operations, hence our secure ML algorithms build on top of them as well, outperform the state of the art schemes in terms of computation and communication costs. This makes our algorithms suitable for devices with limited resources that are often found in Industrial IoT (Internet of Things)