Biblio
Filters: Author is Sun, Chuang [Clear All Filters]
Metaverse Applications in Energy Internet. 2022 IEEE International Conference on Energy Internet (ICEI). :7–12.
.
2022. With the increasing number of distributed energy sources and the growing demand for free exchange of energy, Energy internet (EI) is confronted with great challenges of persistent connection, stable transmission, real-time interaction, and security. The new definition of metaverse in the EI field is proposed as a potential solution for these challenges by establishing a massive and comprehensive fusion 3D network, which can be considered as the advanced stage of EI. The main characteristics of the metaverse such as reality to virtualization, interaction, persistence, and immersion are introduced. Specifically, we present the key enabling technologies of the metaverse including virtual reality, artificial intelligence, blockchain, and digital twin. Meanwhile, the potential applications are presented from the perspectives of immersive user experience, virtual power station, management, energy trading, new business, device maintenance. Finally, some challenges of metaverse in EI are concluded.
An Improved Byzantine Consensus Based Multi-Signature Algorithm. 2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). :777–780.
.
2021. Traditional grid-centric data storage methods are vulnerable to network attacks or failures due to downtime, causing problems such as data loss or tampering. The security of data storage can be effectively improved by establishing an alliance chain. However, the existing consortium chain consensus algorithm has low scalability, and the consensus time will explode as the number of nodes increases. This paper proposes an improved consensus algorithm (MSBFT) based on multi-signature to address this problem, which spreads data by establishing a system communication tree, reducing communication and network transmission costs, and improving system scalability. By generating schnorr multi-signature as the shared signature of system nodes, the computational cost of verification between nodes is reduced. At the end of the article, simulations prove the superiority of the proposed method.
Research on Framework of Smart Grid Data Secure Storage from Blockchain Perspective. 2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). :270—273.
.
2021. With the development of technology, the structure of power grid becomes more and more complex, and the amount of data collected is also increasing. In the existing smart power grid, the data collected by sensors need to be uploaded and stored to the trusted central node, but the centralized storage method is easy to cause the malicious attack of the central node, resulting in single point failure, data tampering and other security problems. In order to solve these information security problems, this paper proposes a new data security storage framework based on private blockchain. By using the improved raft algorithm, partial decentralized data storage is used instead of traditional centralized storage. It also introduces in detail the working mechanism of the smart grid data security storage framework, including the process of uploading collected data, data verification, and data block consensus. The security analysis shows the effectiveness of the proposed data storage framework.