Biblio

Filters: Author is Zheng, S.  [Clear All Filters]
2019-02-22
Hu, D., Wang, L., Jiang, W., Zheng, S., Li, B..  2018.  A Novel Image Steganography Method via Deep Convolutional Generative Adversarial Networks. IEEE Access. 6:38303-38314.

The security of image steganography is an important basis for evaluating steganography algorithms. Steganography has recently made great progress in the long-term confrontation with steganalysis. To improve the security of image steganography, steganography must have the ability to resist detection by steganalysis algorithms. Traditional embedding-based steganography embeds the secret information into the content of an image, which unavoidably leaves a trace of the modification that can be detected by increasingly advanced machine-learning-based steganalysis algorithms. The concept of steganography without embedding (SWE), which does not need to modify the data of the carrier image, appeared to overcome the detection of machine-learning-based steganalysis algorithms. In this paper, we propose a novel image SWE method based on deep convolutional generative adversarial networks. We map the secret information into a noise vector and use the trained generator neural network model to generate the carrier image based on the noise vector. No modification or embedding operations are required during the process of image generation, and the information contained in the image can be extracted successfully by another neural network, called the extractor, after training. The experimental results show that this method has the advantages of highly accurate information extraction and a strong ability to resist detection by state-of-the-art image steganalysis algorithms.

2017-02-27
Zheng, Y., Zheng, S..  2015.  Cyber Security Risk Assessment for Industrial Automation Platform. 2015 International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP). :341–344.

Due to the fact that the cyber security risks exist in industrial control system, risk assessment on Industrial Automation Platform (IAP) is discussed in this paper. The cyber security assessment model for IAP is built based on relevant standards at abroad. Fuzzy analytic hierarchy process and fuzzy comprehensive evaluation method based on entropy theory are utilized to evaluate the communication links' risk of IAP software. As a result, the risk weight of communication links which have impacts on platform and the risk level of this platform are given for further study on protective strategy. The assessment result shows that the methods used can evaluate this platform efficiently and practically.