Biblio
Filters: Author is Peraković, Dragan [Clear All Filters]
Classification Based Machine Learning for Detection of DDoS attack in Cloud Computing. 2021 IEEE International Conference on Consumer Electronics (ICCE). :1—4.
.
2021. Distributed Denial of service attack(DDoS)is a network security attack and now the attackers intruded into almost every technology such as cloud computing, IoT, and edge computing to make themselves stronger. As per the behaviour of DDoS, all the available resources like memory, cpu or may be the entire network are consumed by the attacker in order to shutdown the victim`s machine or server. Though, the plenty of defensive mechanism are proposed, but they are not efficient as the attackers get themselves trained by the newly available automated attacking tools. Therefore, we proposed a classification based machine learning approach for detection of DDoS attack in cloud computing. With the help of three classification machine learning algorithms K Nearest Neighbor, Random Forest and Naive Bayes, the mechanism can detect a DDoS attack with the accuracy of 99.76%.
A Big Data and Deep Learning based Approach for DDoS Detection in Cloud Computing Environment. 2021 IEEE 10th Global Conference on Consumer Electronics (GCCE). :287–290.
.
2021. Recently, as a result of the COVID-19 pandemic, the internet service has seen an upsurge in use. As a result, the usage of cloud computing apps, which offer services to end users on a subscription basis, rises in this situation. However, the availability and efficiency of cloud computing resources are impacted by DDoS attacks, which are designed to disrupt the availability and processing power of cloud computing services. Because there is no effective way for detecting or filtering DDoS attacks, they are a dependable weapon for cyber-attackers. Recently, researchers have been experimenting with machine learning (ML) methods in order to create efficient machine learning-based strategies for detecting DDoS assaults. In this context, we propose a technique for detecting DDoS attacks in a cloud computing environment using big data and deep learning algorithms. The proposed technique utilises big data spark technology to analyse a large number of incoming packets and a deep learning machine learning algorithm to filter malicious packets. The KDDCUP99 dataset was used for training and testing, and an accuracy of 99.73% was achieved.