Biblio

Filters: Author is Keshk, Marwa  [Clear All Filters]
2022-04-20
Keshk, Marwa, Sitnikova, Elena, Moustafa, Nour, Hu, Jiankun, Khalil, Ibrahim.  2021.  An Integrated Framework for Privacy-Preserving Based Anomaly Detection for Cyber-Physical Systems. IEEE Transactions on Sustainable Computing. 6:66–79.
Protecting Cyber-physical Systems (CPSs) is highly important for preserving sensitive information and detecting cyber threats. Developing a robust privacy-preserving anomaly detection method requires physical and network data about the systems, such as Supervisory Control and Data Acquisition (SCADA), for protecting original data and recognising cyber-attacks. In this paper, a new privacy-preserving anomaly detection framework, so-called PPAD-CPS, is proposed for protecting confidential information and discovering malicious observations in power systems and their network traffic. The framework involves two main modules. First, a data pre-processing module is suggested for filtering and transforming original data into a new format that achieves the target of privacy preservation. Second, an anomaly detection module is suggested using a Gaussian Mixture Model (GMM) and Kalman Filter (KF) for precisely estimating the posterior probabilities of legitimate and anomalous events. The performance of the PPAD-CPS framework is assessed using two public datasets, namely the Power System and UNSW-NB15 dataset. The experimental results show that the framework is more effective than four recent techniques for obtaining high privacy levels. Moreover, the framework outperforms seven peer anomaly detection techniques in terms of detection rate, false positive rate, and computational time.
Conference Name: IEEE Transactions on Sustainable Computing
Keshk, Marwa, Turnbull, Benjamin, Sitnikova, Elena, Vatsalan, Dinusha, Moustafa, Nour.  2021.  Privacy-Preserving Schemes for Safeguarding Heterogeneous Data Sources in Cyber-Physical Systems. IEEE Access. 9:55077–55097.
Cyber-Physical Systems (CPS) underpin global critical infrastructure, including power, water, gas systems and smart grids. CPS, as a technology platform, is unique as a target for Advanced Persistent Threats (APTs), given the potentially high impact of a successful breach. Additionally, CPSs are targets as they produce significant amounts of heterogeneous data from the multitude of devices and networks included in their architecture. It is, therefore, essential to develop efficient privacy-preserving techniques for safeguarding system data from cyber attacks. This paper introduces a comprehensive review of the current privacy-preserving techniques for protecting CPS systems and their data from cyber attacks. Concepts of Privacy preservation and CPSs are discussed, demonstrating CPSs' components and the way these systems could be exploited by either cyber and physical hacking scenarios. Then, classification of privacy preservation according to the way they would be protected, including perturbation, authentication, machine learning (ML), cryptography and blockchain, are explained to illustrate how they would be employed for data privacy preservation. Finally, we show existing challenges, solutions and future research directions of privacy preservation in CPSs.
Conference Name: IEEE Access
Keshk, Marwa, Turnbull, Benjamin, Moustafa, Nour, Vatsalan, Dinusha, Choo, Kim-Kwang Raymond.  2020.  A Privacy-Preserving-Framework-Based Blockchain and Deep Learning for Protecting Smart Power Networks. IEEE Transactions on Industrial Informatics. 16:5110–5118.
Modern power systems depend on cyber-physical systems to link physical devices and control technologies. A major concern in the implementation of smart power networks is to minimize the risk of data privacy violation (e.g., by adversaries using data poisoning and inference attacks). In this article, we propose a privacy-preserving framework to achieve both privacy and security in smart power networks. The framework includes two main modules: a two-level privacy module and an anomaly detection module. In the two-level privacy module, an enhanced-proof-of-work-technique-based blockchain is designed to verify data integrity and mitigate data poisoning attacks, and a variational autoencoder is simultaneously applied for transforming data into an encoded format for preventing inference attacks. In the anomaly detection module, a long short-term memory deep learning technique is used for training and validating the outputs of the two-level privacy module using two public datasets. The results highlight that the proposed framework can efficiently protect data of smart power networks and discover abnormal behaviors, in comparison to several state-of-the-art techniques.
Conference Name: IEEE Transactions on Industrial Informatics