Biblio

Filters: Author is Sadeghi, Ahmad-Reza  [Clear All Filters]
2022-10-03
Zeitouni, Shaza, Vliegen, Jo, Frassetto, Tommaso, Koch, Dirk, Sadeghi, Ahmad-Reza, Mentens, Nele.  2021.  Trusted Configuration in Cloud FPGAs. 2021 IEEE 29th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). :233–241.
In this paper we tackle the open paradoxical challenge of FPGA-accelerated cloud computing: On one hand, clients aim to secure their Intellectual Property (IP) by encrypting their configuration bitstreams prior to uploading them to the cloud. On the other hand, cloud service providers disallow the use of encrypted bitstreams to mitigate rogue configurations from damaging or disabling the FPGA. Instead, cloud providers require a verifiable check on the hardware design that is intended to run on a cloud FPGA at the netlist-level before generating the bitstream and loading it onto the FPGA, therefore, contradicting the IP protection requirement of clients. Currently, there exist no practical solution that can adequately address this challenge.We present the first practical solution that, under reasonable trust assumptions, satisfies the IP protection requirement of the client and provides a bitstream sanity check to the cloud provider. Our proof-of-concept implementation uses existing tools and commodity hardware. It is based on a trusted FPGA shell that utilizes less than 1% of the FPGA resources on a Xilinx VCU118 evaluation board, and an Intel SGX machine running the design checks on the client bitstream.
2021-09-16
Dessouky, Ghada, Frassetto, Tommaso, Jauernig, Patrick, Sadeghi, Ahmad-Reza, Stapf, Emmanuel.  2020.  With Great Complexity Comes Great Vulnerability: From Stand-Alone Fixes to Reconfigurable Security. IEEE Security Privacy. 18:57–66.
The increasing complexity of modern computing devices has rendered security architectures vulnerable to recent side-channel and transient-execution attacks. We discuss the most relevant defenses as well as their drawbacks and how to overcome them for next-generation secure processor design.
Conference Name: IEEE Security Privacy
2020-08-17
De Oliveira Nunes, Ivan, Dessouky, Ghada, Ibrahim, Ahmad, Rattanavipanon, Norrathep, Sadeghi, Ahmad-Reza, Tsudik, Gene.  2019.  Towards Systematic Design of Collective Remote Attestation Protocols. 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS). :1188–1198.
Networks of and embedded (IoT) devices are becoming increasingly popular, particularly, in settings such as smart homes, factories and vehicles. These networks can include numerous (potentially diverse) devices that collectively perform certain tasks. In order to guarantee overall safety and privacy, especially in the face of remote exploits, software integrity of each device must be continuously assured. This can be achieved by Remote Attestation (RA) - a security service for reporting current software state of a remote and untrusted device. While RA of a single device is well understood, collective RA of large numbers of networked embedded devices poses new research challenges. In particular, unlike single-device RA, collective RA has not benefited from any systematic treatment. Thus, unsurprisingly, prior collective RA schemes are designed in an ad hoc fashion. Our work takes the first step toward systematic design of collective RA, in order to help place collective RA onto a solid ground and serve as a set of design guidelines for both researchers and practitioners. We explore the design space for collective RA and show how the notions of security and effectiveness can be formally defined according to a given application domain. We then present and evaluate a concrete collective RA scheme systematically designed to satisfy these goals.
2019-03-11
Brasser, Ferdinand, Davi, Lucas, Dhavlle, Abhijitt, Frassetto, Tommaso, Dinakarrao, Sai Manoj Pudukotai, Rafatirad, Setareh, Sadeghi, Ahmad-Reza, Sasan, Avesta, Sayadi, Hossein, Zeitouni, Shaza et al..  2018.  Advances and Throwbacks in Hardware-assisted Security: Special Session. Proceedings of the International Conference on Compilers, Architecture and Synthesis for Embedded Systems. :15:1–15:10.
Hardware security architectures and primitives are becoming increasingly important in practice providing trust anchors and trusted execution environment to protect modern software systems. Over the past two decades we have witnessed various hardware security solutions and trends from Trusted Platform Modules (TPM), performance counters for security, ARM's TrustZone, and Physically Unclonable Functions (PUFs), to very recent advances such as Intel's Software Guard Extension (SGX). Unfortunately, these solutions are rarely used by third party developers, make strong trust assumptions (including in manufacturers), are too expensive for small constrained devices, do not easily scale, or suffer from information leakage. Academic research has proposed a variety of solutions, in hardware security architectures, these advancements are rarely deployed in practice.
2019-09-05
Deshotels, Luke, Deaconescu, Razvan, Carabas, Costin, Manda, Iulia, Enck, William, Chiroiu, Mihai, Li, Ninghui, Sadeghi, Ahmad-Reza.  2018.  iOracle: Automated Evaluation of Access Control Policies in iOS. Proceedings of the 2018 on Asia Conference on Computer and Communications Security. :117-131.

Modern operating systems, such as iOS, use multiple access control policies to define an overall protection system. However, the complexity of these policies and their interactions can hide policy flaws that compromise the security of the protection system. We propose iOracle, a framework that logically models the iOS protection system such that queries can be made to automatically detect policy flaws. iOracle models policies and runtime context extracted from iOS firmware images, developer resources, and jailbroken devices, and iOracle significantly reduces the complexity of queries by modeling policy semantics. We evaluate iOracle by using it to successfully triage executables likely to have policy flaws and comparing our results to the executables exploited in four recent jailbreaks. When applied to iOS 10, iOracle identifies previously unknown policy flaws that allow attackers to modify or bypass access control policies. For compromised system processes, consequences of these policy flaws include sandbox escapes (with respect to read/write file access) and changing the ownership of arbitrary files. By automating the evaluation of iOS access control policies, iOracle provides a practical approach to hardening iOS security by identifying policy flaws before they are exploited.

2018-05-16
Sadeghi, Ahmad-Reza.  2017.  Moving Targets vs. Moving Adversaries: On the Effectiveness of System Randomization. Proceedings of the 2017 Workshop on Moving Target Defense. :51–52.
Memory-corruption vulnerabilities pose a severe threat on modern systems security. Although this problem is known for almost three decades it is unlikely to be solved in the near future because a large amount of modern software is still programmed in unsafe, legacy languages such as C/C++. With new vulnerabilities in popular software discovered almost every day, and with high third party demand for (purchasing) the corresponding exploits, runtime attacks are more prevalent than ever. Even perfect cryptography can easily be undermined by exploiting software vulnerabilities. Typically, one vulnerability in wide-spread software (e.g., Tor Browser) is sufficient for the adversary to compromise all users. Moving target approaches such as software diversity [2] and system randomization techniques [7] are considered to be effective and practical means to strongly reduce the scale of such attacks because ideally, the adversary would require to craft a unique exploit per user. However, recently it was shown that existing software-randomization schemes can be circumvented by practical exploitation techniques such as Just-In-Time Return Oriented Programming (JIT-ROP) that takes advantage of information leakage [1]. The attack demonstrated that even a single disclosed code pointer can be exploited to defeat any (fine-grained) code randomization scheme. Later, it was shown that there are various sources of information leakage that can be exploited such as virtual function pointers [4]. JIT-ROP motivated a number of subsequent works to prevent the adversary from reading code such as Readactor [3,5], or ASLR Guard [8]. For instance, Readactor and its successor Readactor++ [3,5] use various techniques to prevent direct and indirect code disclosure, which seems to be non-trivial in general [6]. The arms race will continue.
2017-10-10
Abera, Tigist, Asokan, N., Davi, Lucas, Ekberg, Jan-Erik, Nyman, Thomas, Paverd, Andrew, Sadeghi, Ahmad-Reza, Tsudik, Gene.  2016.  C-FLAT: Control-Flow Attestation for Embedded Systems Software. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :743–754.

Remote attestation is a crucial security service particularly relevant to increasingly popular IoT (and other embedded) devices. It allows a trusted party (verifier) to learn the state of a remote, and potentially malware-infected, device (prover). Most existing approaches are static in nature and only check whether benign software is initially loaded on the prover. However, they are vulnerable to runtime attacks that hijack the application's control or data flow, e.g., via return-oriented programming or data-oriented exploits. As a concrete step towards more comprehensive runtime remote attestation, we present the design and implementation of Control-FLow ATtestation (C-FLAT) that enables remote attestation of an application's control-flow path, without requiring the source code. We describe a full prototype implementation of C-FLAT on Raspberry Pi using its ARM TrustZone hardware security extensions. We evaluate C-FLAT's performance using a real-world embedded (cyber-physical) application, and demonstrate its efficacy against control-flow hijacking attacks.

2017-03-29
Ibrahim, Ahmad, Sadeghi, Ahmad-Reza, Tsudik, Gene, Zeitouni, Shaza.  2016.  DARPA: Device Attestation Resilient to Physical Attacks. Proceedings of the 9th ACM Conference on Security & Privacy in Wireless and Mobile Networks. :171–182.

As embedded devices (under the guise of "smart-whatever") rapidly proliferate into many domains, they become attractive targets for malware. Protecting them from software and physical attacks becomes both important and challenging. Remote attestation is a basic tool for mitigating such attacks. It allows a trusted party (verifier) to remotely assess software integrity of a remote, untrusted, and possibly compromised, embedded device (prover). Prior remote attestation methods focus on software (malware) attacks in a one-verifier/one-prover setting. Physical attacks on provers are generally ruled out as being either unrealistic or impossible to mitigate. In this paper, we argue that physical attacks must be considered, particularly, in the context of many provers, e.g., a network, of devices. As- suming that physical attacks require capture and subsequent temporary disablement of the victim device(s), we propose DARPA, a light-weight protocol that takes advantage of absence detection to identify suspected devices. DARPA is resilient against a very strong adversary and imposes minimal additional hardware requirements. We justify and identify DARPA's design goals and evaluate its security and costs.

2017-04-20
Brasser, Ferdinand, Rasmussen, Kasper B., Sadeghi, Ahmad-Reza, Tsudik, Gene.  2016.  Remote Attestation for Low-end Embedded Devices: The Prover's Perspective. Proceedings of the 53rd Annual Design Automation Conference. :91:1–91:6.

Security of embedded devices is a timely and important issue, due to the proliferation of these devices into numerous and diverse settings, as well as their growing popularity as attack targets, especially, via remote malware infestations. One important defense mechanism is remote attestation, whereby a trusted, and possibly remote, party (verifier) checks the internal state of an untrusted, and potentially compromised, device (prover). Despite much prior work, remote attestation remains a vibrant research topic. However, most attestation schemes naturally focus on the scenario where the verifier is trusted and the prover is not. The opposite setting–-where the prover is benign, and the verifier is malicious–-has been side-stepped. To this end, this paper considers the issue of prover security, including: verifier impersonation, denial-of-service (DoS) and replay attacks, all of which result in unauthorized invocation of attestation functionality on the prover. We argue that protection of the prover from these attacks must be treated as an important component of any remote attestation method. We formulate a new roaming adversary model for this scenario and present the trade-offs involved in countering this threat. We also identify new features and methods needed to protect the prover with minimal additional requirements.

Ambrosin, Moreno, Conti, Mauro, Ibrahim, Ahmad, Neven, Gregory, Sadeghi, Ahmad-Reza, Schunter, Matthias.  2016.  SANA: Secure and Scalable Aggregate Network Attestation. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :731–742.

Large numbers of smart connected devices, also named as the Internet of Things (IoT), are permeating our environments (homes, factories, cars, and also our body - with wearable devices) to collect data and act on the insight derived. Ensuring software integrity (including OS, apps, and configurations) on such smart devices is then essential to guarantee both privacy and safety. A key mechanism to protect the software integrity of these devices is remote attestation: A process that allows a remote verifier to validate the integrity of the software of a device. This process usually makes use of a signed hash value of the actual device's software, generated by dedicated hardware. While individual device attestation is a well-established technique, to date integrity verification of a very large number of devices remains an open problem, due to scalability issues. In this paper, we present SANA, the first secure and scalable protocol for efficient attestation of large sets of devices that works under realistic assumptions. SANA relies on a novel signature scheme to allow anyone to publicly verify a collective attestation in constant time and space, for virtually an unlimited number of devices. We substantially improve existing swarm attestation schemes by supporting a realistic trust model where: (1) only the targeted devices are required to implement attestation; (2) compromising any device does not harm others; and (3) all aggregators can be untrusted. We implemented SANA and demonstrated its efficiency on tiny sensor devices. Furthermore, we simulated SANA at large scale, to assess its scalability. Our results show that SANA can provide efficient attestation of networks of 1,000,000 devices, in only 2.5 seconds.

2017-03-20
Deshotels, Luke, Deaconescu, Razvan, Chiroiu, Mihai, Davi, Lucas, Enck, William, Sadeghi, Ahmad-Reza.  2016.  SandScout: Automatic Detection of Flaws in iOS Sandbox Profiles. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :704–716.

Recent literature on iOS security has focused on the malicious potential of third-party applications, demonstrating how developers can bypass application vetting and code-level protections. In addition to these protections, iOS uses a generic sandbox profile called "container" to confine malicious or exploited third-party applications. In this paper, we present the first systematic analysis of the iOS container sandbox profile. We propose the SandScout framework to extract, decompile, formally model, and analyze iOS sandbox profiles as logic-based programs. We use our Prolog-based queries to evaluate file-based security properties of the container sandbox profile for iOS 9.0.2 and discover seven classes of exploitable vulnerabilities. These attacks affect non-jailbroken devices running later versions of iOS. We are working with Apple to resolve these attacks, and we expect that SandScout will play a significant role in the development of sandbox profiles for future versions of iOS.