Biblio

Filters: Author is Faust, Sebastian  [Clear All Filters]
2022-08-12
Aumayr, Lukas, Maffei, Matteo, Ersoy, Oğuzhan, Erwig, Andreas, Faust, Sebastian, Riahi, Siavash, Hostáková, Kristina, Moreno-Sanchez, Pedro.  2021.  Bitcoin-Compatible Virtual Channels. 2021 IEEE Symposium on Security and Privacy (SP). :901–918.
Current permissionless cryptocurrencies such as Bitcoin suffer from a limited transaction rate and slow confirmation time, which hinders further adoption. Payment channels are one of the most promising solutions to address these problems, as they allow the parties of the channel to perform arbitrarily many payments in a peer-to-peer fashion while uploading only two transactions on the blockchain. This concept has been generalized into payment channel networks where a path of payment channels is used to settle the payment between two users that might not share a direct channel between them. However, this approach requires the active involvement of each user in the path, making the system less reliable (they might be offline), more expensive (they charge fees per payment), and slower (intermediaries need to be actively involved in the payment). To mitigate this issue, recent work has introduced the concept of virtual channels (IEEE S&P’19), which involve intermediaries only in the initial creation of a bridge between payer and payee, who can later on independently perform arbitrarily many off-chain transactions. Unfortunately, existing constructions are only available for Ethereum, as they rely on its account model and Turing-complete scripting language. The realization of virtual channels in other blockchain technologies with limited scripting capabilities, like Bitcoin, was so far considered an open challenge.In this work, we present the first virtual channel protocols that are built on the UTXO-model and require a scripting language supporting only a digital signature scheme and a timelock functionality, being thus backward compatible with virtually every cryptocurrency, including Bitcoin. We formalize the security properties of virtual channels as an ideal functionality in the Universal Composability framework and prove that our protocol constitutes a secure realization thereof. We have prototyped and evaluated our protocol on the Bitcoin blockchain, demonstrating its efficiency: for n sequential payments, they require an off-chain exchange of 9+2n transactions or a total of 3524+695n bytes, with no on-chain footprint in the optimistic case. This is a substantial improvement compared to routing payments in a payment channel network, which requires 8n transactions with a total of 3026n bytes to be exchanged.
2019-10-02
Bronchain, Olivier, Dassy, Louis, Faust, Sebastian, Standaert, Fran\c cois-Xavier.  2018.  Implementing Trojan-Resilient Hardware from (Mostly) Untrusted Components Designed by Colluding Manufacturers. Proceedings of the 2018 Workshop on Attacks and Solutions in Hardware Security. :1–10.
At CCS 2016, Dziembowski et al. proved the security of a generic compiler able to transform any circuit into a Trojan-resilient one based on a (necessary) number of trusted gates. Informally, it exploits techniques from the Multi-Party Computation (MPC) literature in order to exponentially reduce the probability of a successful Trojan attack. As a result, its concrete relevance depends on ( i ) the possibility to reach good performances with affordable hardware, and ( ii ) the actual number of trusted gates the solution requires. In this paper, we assess the practicality of the CCS 2016 Trojan-resilient compiler based on a block cipher case study, and optimize its performances in different directions. From the algorithmic viewpoint, we use a recent MPC protocol by Araki et al. (CCS 2016) in order to increase the throughput of our implementations, and we investigate various block ciphers and S-box representations to reduce their communication complexity. From a design viewpoint, we develop an architecture that balances the computation and communication cost of our Trojan-resilient circuits. From an implementation viewpoint, we describe a prototype hardware combining several commercial FPGAs on a dedicated printed circuit board. Thanks to these advances, we exhibit realistic performances for a Trojan-resilient circuit purposed for high-security applications, and confirm that the amount of trusted gates required by the CCS 2016 compiler is well minimized.
2019-09-26
Dziembowski, Stefan, Eckey, Lisa, Faust, Sebastian.  2018.  FairSwap: How To Fairly Exchange Digital Goods. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :967-984.

We introduce FairSwap – an efficient protocol for fair exchange of digital goods using smart contracts. A fair exchange protocol allows a sender S to sell a digital commodity x for a fixed price p to a receiver R. The protocol is said to be secure if R only pays if he receives the correct x. Our solution guarantees fairness by relying on smart contracts executed over decentralized cryptocurrencies, where the contract takes the role of an external judge that completes the exchange in case of disagreement. While in the past there have been several proposals for building fair exchange protocols over cryptocurrencies, our solution has two distinctive features that makes it particular attractive when users deal with large commodities. These advantages are: (1) minimizing the cost for running the smart contract on the blockchain, and (2) avoiding expensive cryptographic tools such as zero-knowledge proofs. In addition to our new protocols, we provide formal security definitions for smart contract based fair exchange, and prove security of our construction. Finally, we illustrate several applications of our basic protocol and evaluate practicality of our approach via a prototype implementation for fairly selling large files over the cryptocurrency Ethereum. This article is summarized in: the morning paper an interesting/influential/important paper from the world of CS every weekday morning, as selected by Adrian Colyer

2017-09-15
Dziembowski, Stefan, Faust, Sebastian, Standaert, François-Xavier.  2016.  Private Circuits III: Hardware Trojan-Resilience via Testing Amplification. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :142–153.

Security against hardware trojans is currently becoming an essential ingredient to ensure trust in information systems. A variety of solutions have been introduced to reach this goal, ranging from reactive (i.e., detection-based) to preventive (i.e., trying to make the insertion of a trojan more difficult for the adversary). In this paper, we show how testing (which is a typical detection tool) can be used to state concrete security guarantees for preventive approaches to trojan-resilience. For this purpose, we build on and formalize two important previous works which introduced ``input scrambling" and ``split manufacturing" as countermeasures to hardware trojans. Using these ingredients, we present a generic compiler that can transform any circuit into a trojan-resilient one, for which we can state quantitative security guarantees on the number of correct executions of the circuit thanks to a new tool denoted as ``testing amplification". Compared to previous works, our threat model covers an extended range of hardware trojans while we stick with the goal of minimizing the number of honest elements in our transformed circuits. Since transformed circuits essentially correspond to redundant multiparty computations of the target functionality, they also allow reasonably efficient implementations, which can be further optimized if specialized to certain cryptographic primitives and security goals.