Biblio

Filters: Author is Green, Benjamin  [Clear All Filters]
2018-05-09
Green, Benjamin, Krotofil, Marina, Abbasi, Ali.  2017.  On the Significance of Process Comprehension for Conducting Targeted ICS Attacks. Proceedings of the 2017 Workshop on Cyber-Physical Systems Security and PrivaCy. :57–67.

The exploitation of Industrial Control Systems (ICSs) has been described as both easy and impossible, where is the truth? PostStuxnet works have included a plethora of ICS focused cyber security research activities, with topics covering device maturity, network protocols, and overall cyber security culture. We often hear the notion of ICSs being highly vulnerable due to a lack of inbuilt security mechanisms, considered a low hanging fruit to a variety of low skilled threat actors. While there is substantial evidence to support such a notion, when considering targeted attacks on ICS, it is hard to believe an attacker with limited resources, such as a script kiddie or hacktivist, using publicly accessible tools and exploits alone, would have adequate knowledge and resources to achieve targeted operational process manipulation, while simultaneously evade detection. Through use of a testbed environment, this paper provides two practical examples based on a Man-In-The-Middle scenario, demonstrating the types of information an attacker would need obtain, collate, and comprehend, in order to begin targeted process manipulation and detection avoidance. This allows for a clearer view of associated challenges, and illustrate why targeted ICS exploitation might not be possible for every malicious actor.

2017-05-19
Green, Benjamin, Krotofil, Marina, Hutchison, David.  2016.  Achieving ICS Resilience and Security Through Granular Data Flow Management. Proceedings of the 2Nd ACM Workshop on Cyber-Physical Systems Security and Privacy. :93–101.

Modern Industrial Control Systems (ICS) rely on enterprise to plant floor connectivity. Where the size, diversity, and therefore complexity of ICS increase, operational requirements, goals, and challenges defined by users across various sub-systems follow. Recent trends in Information Technology (IT) and Operational Technology (OT) convergence may cause operators to lose a comprehensive understanding of end-to-end data flow requirements. This presents a risk to system security and resilience. Sensors were once solely applied for operational process use, but now act as inputs supporting a diverse set of organisational requirements. If these are not fully understood, incomplete risk assessment, and inappropriate implementation of security controls could occur. In search of a solution, operators may turn to standards and guidelines. This paper reviews popular standards and guidelines, prior to the presentation of a case study and conceptual tool, highlighting the importance of data flows, critical data processing points, and system-to-user relationships. The proposed approach forms a basis for risk assessment and security control implementation, aiding the evolution of ICS security and resilience.

2017-10-19
Jardine, William, Frey, Sylvain, Green, Benjamin, Rashid, Awais.  2016.  SENAMI: Selective Non-Invasive Active Monitoring for ICS Intrusion Detection. Proceedings of the 2Nd ACM Workshop on Cyber-Physical Systems Security and Privacy. :23–34.
Current intrusion detection systems (IDS) for industrial control systems (ICS) mostly involve the retrofitting of conventional network IDSs, such as SNORT. Such an approach is prone to missing highly targeted and specific attacks against ICS. Where ICS-specific approaches exist, they often rely on passive network monitoring techniques, offering a low cost solution, and avoiding any computational overhead arising from actively polling ICS devices. However, the use of passive approaches alone could fail in the detection of attacks that alter the behaviour of ICS devices (as was the case in Stuxnet). Where active solutions exist, they can be resource-intensive, posing the risk of overloading legacy devices which are commonplace in ICSs. In this paper we aim to overcome these challenges through the combination of a passive network monitoring approach, and selective active monitoring based on attack vectors specific to an ICS context. We present the implementation of our IDS, SENAMI, for use with Siemens S7 devices. We evaluate the effectiveness of SENAMI in a comprehensive testbed environment, demonstrating validity of the proposed approach through the detection of purely passive attacks at a rate of 99%, and active value tampering attacks at a rate of 81-93%. Crucially, we reach recall values greater than 0.96, indicating few attack scenarios generating false negatives.