Biblio

Filters: Author is Liu, Bin  [Clear All Filters]
2023-04-28
Gao, Hongbin, Wang, Shangxing, Zhang, Hongbin, Liu, Bin, Zhao, Dongmei, Liu, Zhen.  2022.  Network Security Situation Assessment Method Based on Absorbing Markov Chain. 2022 International Conference on Networking and Network Applications (NaNA). :556–561.
This paper has a new network security evaluation method as an absorbing Markov chain-based assessment method. This method is different from other network security situation assessment methods based on graph theory. It effectively refinement issues such as poor objectivity of other methods, incomplete consideration of evaluation factors, and mismatching of evaluation results with the actual situation of the network. Firstly, this method collects the security elements in the network. Then, using graph theory combined with absorbing Markov chain, the threat values of vulnerable nodes are calculated and sorted. Finally, the maximum possible attack path is obtained by blending network asset information to determine the current network security status. The experimental results prove that the method fully considers the vulnerability and threat node ranking and the specific case of system network assets, which makes the evaluation result close to the actual network situation.
2023-05-26
Liu, Bin, Chen, Jingzhao, Hu, Yong.  2022.  A Simple Approach to Data-driven Security Detection for Industrial Cyber-Physical Systems. 2022 34th Chinese Control and Decision Conference (CCDC). :5440—5445.
In this paper, a data-driven security detection approach is proposed in a simple manner. The detector is designed to deal with false data injection attacks suffered by industrial cyber-physical systems with unknown model information. First, the attacks are modeled from the perspective of the generalized plant mismatch, rather than the operating data being tampered. Second, some subsystems are selected to reduce the design complexity of the detector, and based on them, an output estimator with iterative form is presented in a theoretical way. Then, a security detector is constructed based on the proposed estimator and its cost function. Finally, the effectiveness of the proposed approach is verified by simulations of a Western States Coordinated Council 9-bus power system.
2022-07-01
Yin, Jinyu, Jiang, Li, Zhang, Xinggong, Liu, Bin.  2021.  INTCP: Information-centric TCP for Satellite Network. 2021 4th International Conference on Hot Information-Centric Networking (HotICN). :86—91.
Satellite networks are booming to provide high-speed and low latency Internet access, but the transport layer becomes one of the main obstacles. Legacy end-to-end TCP is designed for terrestrial networks, not suitable for error-prone, propagation delay varying, and intermittent satellite links. It is necessary to make a clean-slate design for the satellite transport layer. This paper introduces a novel Information-centric Hop-by-Hop transport layer design, INTCP. It carries out hop-by-hop packets retransmission and hop-by-hop congestion control with the help of cache and request-response model. Hop-by-hop retransmission recovers lost packets on hop, reduces retransmission delay. INTCP controls traffic and congestion also by hop. Each hop tries its best to maximize its bandwidth utilization and improves end-to-end throughput. The capability of caching enables asynchronous multicast in transport layer. This would save precious spectrum resources in the satellite network. The performance of INTCP is evaluated with the simulated Starlink constellation. Long-distance communication with more than 1000km is carried out. The results demonstrate that, for the unicast scenario INTCP could reduce 42% one-way delay, 53% delay jitters, and improve 60% throughput compared with the legacy TCP. In multicast scenario, INTCP could achieve more than 6X throughput.