Biblio

Filters: Author is Zhang, Hua  [Clear All Filters]
2023-02-03
Zhang, Hua, Su, Xueneng.  2022.  Method for Vulnerability Analysis of Communication Link in Electric Cyber Physical System. 2022 4th Asia Energy and Electrical Engineering Symposium (AEEES). :41–46.
This paper conducts simulation analysis on power transmission lines and availability of power communication link based on Latin hypercube sampling. It proposes a new method of vulnerability communication link assessment for electric cyber physical system. Wind power output, transmission line failure and communication link failure of electric cyber physical system are sampled to obtain different operating states of electric cyber physical system. The connectivity of communication links under different operating states of electric cyber physical system is calculated to judge whether the communication nodes of the links are connected with the control master station. According to the connection between the link communication node and the control master station, the switching load and switching load of the electric cyber physical system in different operating states are calculated, and the optimal switching load of the electric cyber physical system in different operating states is obtained. This method can clearly identify the vulnerable link in the electric cyber physical system, so as to monitor the vulnerable link and strengthen the link strength.
2022-08-12
Fan, Chengwei, Chen, Zhen, Wang, Xiaoru, Teng, Yufei, Chen, Gang, Zhang, Hua, Han, Xiaoyan.  2019.  Static Security Assessment of Power System Considering Governor Nonlinearity. 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia). :128–133.
Static security assessment is of great significance to ensure the stable transmission of electric power and steady operation of load. The scale of power system trends to expand due to the development of interconnected grid, and the security analysis of the entire network has become time-consuming. On the basis of synthesizing the efficiency and accuracy, a new method is developed. This method adopts a novel dynamic power flow (DPF) model considering the influence of governor deadband and amplitude-limit on the steady state quantitatively. In order to reduce the computation cost, a contingency screening algorithm based on binary search method is proposed. Static security assessment based on the proposed DPF models is applied to calculate the security margin constrained by severe contingencies. The ones with lower margin are chosen for further time-domain (TD) simulation analysis. The case study of a practical grid verifies the accuracy of the proposed model compared with the conventional one considering no governor nonlinearity. Moreover, the test of a practical grid in China, along with the TD simulation, demonstrates that the proposed method avoids massive simulations of all contingencies as well as provides detail information of severe ones, which is effective for security analysis of practical power grids.