Biblio
Filters: Author is Fahl, Sascha [Clear All Filters]
Committed to Trust: A Qualitative Study on Security & Trust in Open Source Software Projects. 2022 IEEE Symposium on Security and Privacy (SP). :1880–1896.
.
2022. Open Source Software plays an important role in many software ecosystems. Whether in operating systems, network stacks, or as low-level system drivers, software we encounter daily is permeated with code contributions from open source projects. Decentralized development and open collaboration in open source projects introduce unique challenges: code submissions from unknown entities, limited personpower for commit or dependency reviews, and bringing new contributors up-to-date in projects’ best practices & processes.In 27 in-depth, semi-structured interviews with owners, maintainers, and contributors from a diverse set of open source projects, we investigate their security and trust practices. For this, we explore projects’ behind-the-scene processes, provided guidance & policies, as well as incident handling & encountered challenges. We find that our participants’ projects are highly diverse both in deployed security measures and trust processes, as well as their underlying motivations. Based on our findings, we discuss implications for the open source software ecosystem and how the research community can better support open source projects in trust and security considerations. Overall, we argue for supporting open source projects in ways that consider their individual strengths and limitations, especially in the case of smaller projects with low contributor numbers and limited access to resources.
Rethinking SSL Development in an Appified World. Proceedings of the 2013 ACM SIGSAC Conference on Computer &\#38; Communications Security. :49–60.
.
2013. The Secure Sockets Layer (SSL) is widely used to secure data transfers on the Internet. Previous studies have shown that the state of non-browser SSL code is catastrophic across a large variety of desktop applications and libraries as well as a large selection of Android apps, leaving users vulnerable to Man-in-the-Middle attacks (MITMAs). To determine possible causes of SSL problems on all major appified platforms, we extended the analysis to the walled-garden ecosystem of iOS, analyzed software developer forums and conducted interviews with developers of vulnerable apps. Our results show that the root causes are not simply careless developers, but also limitations and issues of the current SSL development paradigm. Based on our findings, we derive a proposal to rethink the handling of SSL in the appified world and present a set of countermeasures to improve the handling of SSL using Android as a blueprint for other platforms. Our countermeasures prevent developers from willfully or accidentally breaking SSL certificate validation, offer support for extended features such as SSL Pinning and different SSL validation infrastructures, and protect users. We evaluated our solution against 13,500 popular Android apps and conducted developer interviews to judge the acceptance of our approach and found that our solution works well for all investigated apps and developers.