Biblio
Filters: Author is Liu, Pan [Clear All Filters]
Physical Design of Local-volume Ignition for Inertial Confinement Fusion. 2022 International Conference on Applied Physics and Computing (ICAPC). :94–99.
.
2022. Inertial Confinement Fusion(ICF) uses the inertia of the substance itself to confine the nest-temperature thermonuclear fuel plasma to achieve thermonuclear fusion and obtain fusion energy. In the design of the local-volume ignition target capsule, the ignition zone and the main combustion zone are separated by heavy medium. The ignition zone is located in the center of the system (the part of the fusion combustion). The mass is small and can be compressed to high density and the overall temperature is raised to the ignition state (local-volume ignition). The temperature increase and density increase of the local volume ignition are relatively decoupled in time. The multi-step enhanced shock wave heats the fuel temperature drop, after which the collision effect accelerates the metal shell layer by layer, and uses the inertia of high-Z metal shell with a larger residual mass to achieve effective compression of the fuel areal after the driving source ends for a long time. Local volume ignition has the advantages of no need to reshape the radiation driving pulse, resistance to the influence of hot electrons, less demanding compression symmetry, and large combustion gain.
A Privacy-preserving Approach to Distributed Set-membership Estimation over Wireless Sensor Networks. 2022 9th International Conference on Dependable Systems and Their Applications (DSA). :974—979.
.
2022. This paper focuses on the system on wireless sensor networks. The system is linear and the time of the system is discrete as well as variable, which named discrete-time linear time-varying systems (DLTVS). DLTVS are vulnerable to network attacks when exchanging information between sensors in the network, as well as putting their security at risk. A DLTVS with privacy-preserving is designed for this purpose. A set-membership estimator is designed by adding privacy noise obeying the Laplace distribution to state at the initial moment. Simultaneously, the differential privacy of the system is analyzed. On this basis, the real state of the system and the existence form of the estimator for the desired distribution are analyzed. Finally, simulation examples are given, which prove that the model after adding differential privacy can obtain accurate estimates and ensure the security of the system state.