Biblio

Filters: Author is Xuxian Jiang  [Clear All Filters]
2015-05-04
Rastogi, V., Yan Chen, Xuxian Jiang.  2014.  Catch Me If You Can: Evaluating Android Anti-Malware Against Transformation Attacks. Information Forensics and Security, IEEE Transactions on. 9:99-108.

Mobile malware threats (e.g., on Android) have recently become a real concern. In this paper, we evaluate the state-of-the-art commercial mobile anti-malware products for Android and test how resistant they are against various common obfuscation techniques (even with known malware). Such an evaluation is important for not only measuring the available defense against mobile malware threats, but also proposing effective, next-generation solutions. We developed DroidChameleon, a systematic framework with various transformation techniques, and used it for our study. Our results on 10 popular commercial anti-malware applications for Android are worrisome: none of these tools is resistant against common malware transformation techniques. In addition, a majority of them can be trivially defeated by applying slight transformation over known malware with little effort for malware authors. Finally, in light of our results, we propose possible remedies for improving the current state of malware detection on mobile devices.

2014-09-26
Yajin Zhou, Xuxian Jiang.  2012.  Dissecting Android Malware: Characterization and Evolution. Security and Privacy (SP), 2012 IEEE Symposium on. :95-109.

The popularity and adoption of smart phones has greatly stimulated the spread of mobile malware, especially on the popular platforms such as Android. In light of their rapid growth, there is a pressing need to develop effective solutions. However, our defense capability is largely constrained by the limited understanding of these emerging mobile malware and the lack of timely access to related samples. In this paper, we focus on the Android platform and aim to systematize or characterize existing Android malware. Particularly, with more than one year effort, we have managed to collect more than 1,200 malware samples that cover the majority of existing Android malware families, ranging from their debut in August 2010 to recent ones in October 2011. In addition, we systematically characterize them from various aspects, including their installation methods, activation mechanisms as well as the nature of carried malicious payloads. The characterization and a subsequent evolution-based study of representative families reveal that they are evolving rapidly to circumvent the detection from existing mobile anti-virus software. Based on the evaluation with four representative mobile security software, our experiments show that the best case detects 79.6% of them while the worst case detects only 20.2% in our dataset. These results clearly call for the need to better develop next-generation anti-mobile-malware solutions.