Biblio

Filters: Author is Li, Kai  [Clear All Filters]
2022-08-26
Li, Kai, Yang, Dawei, Bai, Liang, Wang, Tianjun.  2021.  Security Risk Assessment Method of Edge Computing Container Based on Dynamic Game. 2021 IEEE 6th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA). :195—199.
Compared with other virtualization technologies, container technology is widely used in edge computing because of its low cost, high reliability, high flexibility and fast portability. However, the use of container technology can alleviate the pressure of massive data, but also bring complex and diverse security problems. Reliable information security risk assessment method is the key to ensure the smooth application of container technology. According to the risk assessment theory, a security risk assessment method for edge computing containers based on dynamic game theory is proposed. Aiming at the complex container security attack and defense process, the container system's security model is constructed based on dynamic game theory. By combining the attack and defense matrix, the Nash equilibrium solution of the model is calculated, and the dynamic process of the mutual game between security defense and malicious attackers is analyzed. By solving the feedback Nash equilibrium solution of the model, the optimal strategies of the attackers are calculated. Finally, the simulation tool is used to solve the feedback Nash equilibrium solution of the two players in the proposed model, and the experimental environment verifies the usability of the risk assessment method.
2020-09-28
Li, Kai, Kurunathan, Harrison, Severino, Ricardo, Tovar, Eduardo.  2018.  Cooperative Key Generation for Data Dissemination in Cyber-Physical Systems. 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS). :331–332.
Securing wireless communication is significant for privacy and confidentiality of sensing data in Cyber-Physical Systems (CPS). However, due to broadcast nature of radio channels, disseminating sensory data is vulnerable to eavesdropping and message modification. Generating secret keys by extracting the shared randomness in a wireless fading channel is a promising way to improve the communication security. In this poster, we present a novel secret key generation protocol for securing real-time data dissemination in CPS, where the sensor nodes cooperatively generate a shared key by estimating the quantized fading channel randomness. A 2-hop wireless sensor network testbed is built and preliminary experimental results show that the quantization intervals and distance between the nodes lead to a secret bit mismatch.
2020-06-01
Tang, Yuzhe, Zou, Qiwu, Chen, Ju, Li, Kai, Kamhoua, Charles A., Kwiat, Kevin, Njilla, Laurent.  2018.  ChainFS: Blockchain-Secured Cloud Storage. 2018 IEEE 11th International Conference on Cloud Computing (CLOUD). :987–990.
This work presents ChainFS, a middleware system that secures cloud storage services using a minimally trusted Blockchain. ChainFS hardens the cloud-storage security against forking attacks. The ChainFS middleware exposes a file-system interface to end users. Internally, ChainFS stores data files in the cloud and exports minimal and necessary functionalities to the Blockchain for key distribution and file operation logging. We implement the ChainFS system on Ethereum and S3FS and closely integrate it with FUSE clients and Amazon S3 cloud storage. We measure the system performance and demonstrate low overhead.
2017-03-07
Lau, Billy Pik Lik, Chaturvedi, Tanmay, Ng, Benny Kai Kiat, Li, Kai, Hasala, Marakkalage S., Yuen, Chau.  2016.  Spatial and Temporal Analysis of Urban Space Utilization with Renewable Wireless Sensor Network. Proceedings of the 3rd IEEE/ACM International Conference on Big Data Computing, Applications and Technologies. :133–142.

Space utilization are important elements for a smart city to determine how well public space are being utilized. Such information could also provide valuable feedback to the urban developer on what are the factors that impact space utilization. The spatial and temporal information for space utilization can be studied and further analyzed to generate insights about that particular space. In our research context, these elements are translated to part of big data and Internet of things (IoT) to eliminate the need of on site investigation. However, there are a number of challenges for large scale deployment, eg. hardware cost, computation capability, communication bandwidth, scalability, data fragmentation, and resident privacy etc. In this paper, we designed and prototype a Renewable Wireless Sensor Network (RWSN), which addressed the aforementioned challenges. Finally, analyzed results based on initial data collected is presented.