Biblio

Filters: Author is Cheng, Xiang  [Clear All Filters]
2023-03-17
Cheng, Xiang, Yang, Hanchao, Jakubisin, D. J., Tripathi, N., Anderson, G., Wang, A. K., Yang, Y., Reed, J. H..  2022.  5G Physical Layer Resiliency Enhancements with NB-IoT Use Case Study. MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM). :379–384.
5G has received significant interest from commercial as well as defense industries. However, resiliency in 5G remains a major concern for its use in military and defense applications. In this paper, we explore physical layer resiliency enhancements for 5G and use narrow-band Internet of Things (NB-IoT) as a study case. Two physical layer modifications, frequency hopping, and direct sequence spreading, are analyzed from the standpoint of implementation and performance. Simulation results show that these techniques are effective to harden the resiliency of the physical layer to interference and jamming. A discussion of protocol considerations for 5G and beyond is provided based on the results.
ISSN: 2155-7586
2017-03-07
Madaio, Michael, Chen, Shang-Tse, Haimson, Oliver L., Zhang, Wenwen, Cheng, Xiang, Hinds-Aldrich, Matthew, Chau, Duen Horng, Dilkina, Bistra.  2016.  Firebird: Predicting Fire Risk and Prioritizing Fire Inspections in Atlanta. Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. :185–194.

The Atlanta Fire Rescue Department (AFRD), like many municipal fire departments, actively works to reduce fire risk by inspecting commercial properties for potential hazards and fire code violations. However, AFRD's fire inspection practices relied on tradition and intuition, with no existing data-driven process for prioritizing fire inspections or identifying new properties requiring inspection. In collaboration with AFRD, we developed the Firebird framework to help municipal fire departments identify and prioritize commercial property fire inspections, using machine learning, geocoding, and information visualization. Firebird computes fire risk scores for over 5,000 buildings in the city, with true positive rates of up to 71% in predicting fires. It has identified 6,096 new potential commercial properties to inspect, based on AFRD's criteria for inspection. Furthermore, through an interactive map, Firebird integrates and visualizes fire incidents, property information and risk scores to help AFRD make informed decisions about fire inspections. Firebird has already begun to make positive impact at both local and national levels. It is improving AFRD's inspection processes and Atlanta residents' safety, and was highlighted by National Fire Protection Association (NFPA) as a best practice for using data to inform fire inspections.