Biblio
Cybersecurity is a problem of growing relevance that impacts all facets of society. As a result, many researchers have become interested in studying cybercriminals and online hacker communities in order to develop more effective cyber defenses. In particular, analysis of hacker community contents may reveal existing and emerging threats that pose great risk to individuals, businesses, and government. Thus, we are interested in developing an automated methodology for identifying tangible and verifiable evidence of potential threats within hacker forums, IRC channels, and carding shops. To identify threats, we couple machine learning methodology with information retrieval techniques. Our approach allows us to distill potential threats from the entirety of collected hacker contents. We present several examples of identified threats found through our analysis techniques. Results suggest that hacker communities can be analyzed to aid in cyber threat detection, thus providing promising direction for future work.