Biblio
Filters: Author is Meng, L. [Clear All Filters]
Multitask Adversarial Learning for Chinese Font Style Transfer. 2020 International Joint Conference on Neural Networks (IJCNN). :1–8.
.
2020. Style transfer between Chinese fonts is challenging due to both the complexity of Chinese characters and the significant difference between fonts. Existing algorithms for this task typically learn a mapping between the reference and target fonts for each character. Subsequently, this mapping is used to generate the characters that do not exist in the target font. However, the characters available for training are unlikely to cover all fine-grained parts of the missing characters, leading to the overfitting problem. As a result, the generated characters of the target font may suffer problems of incomplete or even radicals and dirty dots. To address this problem, this paper presents a multi-task adversarial learning approach, termed MTfontGAN, to generate more vivid Chinese characters. MTfontGAN learns to transfer a reference font to multiple target ones simultaneously. An alignment is imposed on the encoders of different tasks to make them focus on the important parts of the characters in general style transfer. Such cross-task interactions at the feature level effectively improve the generalization capability of MTfontGAN. The performance of MTfontGAN is evaluated on three Chinese font datasets. Experimental results show that MTfontGAN outperforms the state-of-the-art algorithms in a single-task setting. More importantly, increasing the number of tasks leads to better performance in all of them.
Distinguishable de-identified faces. 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG). 04:1–6.
.
2015. The k-anonymity approach adopted by k-Same face de-identification methods enables these methods to serve their purpose of privacy protection. However, it also forces every k original faces to share the same de-identified face, making it impossible to track individuals in a k-Same de-identified video. To address this issue, this paper presents an approach to the creation of distinguishable de-identified faces. This new approach can serve privacy protection perfectly whilst producing de-identified faces that are as distinguishable as their original faces.