Biblio

Filters: Author is Sagiroglu, Seref  [Clear All Filters]
2022-07-12
Kanca, Ali Melih, Sagiroglu, Seref.  2021.  Sharing Cyber Threat Intelligence and Collaboration. 2021 International Conference on Information Security and Cryptology (ISCTURKEY). :167—172.
With the developing technology, cyber threats are developing rapidly, and the motivations and targets of cyber attackers are changing. In order to combat these threats, cyber threat information that provides information about the threats and the characteristics of the attackers is needed. In addition, it is of great importance to cooperate with other stakeholders and share experiences so that more information about threat information can be obtained and necessary measures can be taken quickly. In this context, in this study, it is stated that the establishment of a cooperation mechanism in which cyber threat information is shared will contribute to the cyber security capacity of organizations. And using the Zack Information Gap analysis, the deficiency of organizations in sharing threat information were determined and suggestions were presented. In addition, there are cooperation mechanisms in the USA and the EU where cyber threat information is shared, and it has been evaluated that it would be beneficial to establish a similar mechanism in our country. Thus, it is evaluated that advanced or unpredictable cyber threats can be detected, the cyber security capacities of all stakeholders will increase and a safer cyber ecosystem will be created. In addition, it is possible to collect, store, distribute and share information about the analysis of cyber incidents and malware analysis, to improve existing cyber security products or to encourage new product development, by carrying out joint R&D studies among the stakeholders to ensure that domestic and national cyber security products can be developed. It is predicted that new analysis methods can be developed by using technologies such as artificial intelligence and machine learning.
2023-03-31
Canbay, Yavuz, Vural, Yilmaz, Sagiroglu, Seref.  2018.  Privacy Preserving Big Data Publishing. 2018 International Congress on Big Data, Deep Learning and Fighting Cyber Terrorism (IBIGDELFT). :24–29.
In order to gain more benefits from big data, they must be shared, published, analyzed and processed without having any harm or facing any violation and finally get better values from these analytics. The literature reports that this analytics brings an issue of privacy violations. This issue is also protected by law and bring fines to the companies, institutions or individuals. As a result, data collectors avoid to publish or share their big data due to these concerns. In order to obtain plausible solutions, there are a number of techniques to reduce privacy risks and to enable publishing big data while preserving privacy at the same time. These are known as privacy-preserving big data publishing (PPBDP) models. This study presents the privacy problem in big data, evaluates big data components from privacy perspective, privacy risks and protection methods in big data publishing, and reviews existing privacy-preserving big data publishing approaches and anonymization methods in literature. The results were finally evaluated and discussed, and new suggestions were presented.
2017-03-20
Atici, Mehmet Ali, Sagiroglu, Seref, Dogru, Ibrahim Alper.  2016.  Android malware analysis approach based on control flow graphs and machine learning algorithms. :26–31.

Smart devices from smartphones to wearable computers today have been used in many purposes. These devices run various mobile operating systems like Android, iOS, Symbian, Windows Mobile, etc. Since the mobile devices are widely used and contain personal information, they are subject to security attacks by mobile malware applications. In this work we propose a new approach based on control flow graphs and machine learning algorithms for static Android malware analysis. Experimental results have shown that the proposed approach achieves a high classification accuracy of 96.26% in general and high detection rate of 99.15% for DroidKungfu malware families which are very harmful and difficult to detect because of encrypting the root exploits, by reducing data dimension significantly for real time analysis.