Biblio

Filters: Author is Alessandro Coglio  [Clear All Filters]
2014-10-22
Alessandro Coglio.  2014.  Pop-Refinement. Archive of Formal Proofs.

Pop-refinement is an approach to stepwise refinement, carried out inside an interactive theorem prover by constructing a monotonically decreasing sequence of predicates over deeply embedded target programs. The sequence starts with a predicate that characterizes the possible implementations, and ends with a predicate that characterizes a unique program in explicit syntactic form. Pop-refinement enables more requirements (e.g. program-level and non-functional) to be captured in the initial specification and preserved through refinement. Security requirements expressed as hyperproperties (i.e. predicates over sets of traces) are always preserved by pop-refinement, unlike the popular notion of refinement as trace set inclusion. Two simple examples in Isabelle/HOL are presented, featuring program-level requirements, non-functional requirements, and hyperproperties.