Biblio

Filters: Author is Yu, Tingting  [Clear All Filters]
2020-10-06
Zaman, Tarannum Shaila, Han, Xue, Yu, Tingting.  2019.  SCMiner: Localizing System-Level Concurrency Faults from Large System Call Traces. 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE). :515—526.

Localizing concurrency faults that occur in production is hard because, (1) detailed field data, such as user input, file content and interleaving schedule, may not be available to developers to reproduce the failure; (2) it is often impractical to assume the availability of multiple failing executions to localize the faults using existing techniques; (3) it is challenging to search for buggy locations in an application given limited runtime data; and, (4) concurrency failures at the system level often involve multiple processes or event handlers (e.g., software signals), which can not be handled by existing tools for diagnosing intra-process(thread-level) failures. To address these problems, we present SCMiner, a practical online bug diagnosis tool to help developers understand how a system-level concurrency fault happens based on the logs collected by the default system audit tools. SCMiner achieves online bug diagnosis to obviate the need for offline bug reproduction. SCMiner does not require code instrumentation on the production system or rely on the assumption of the availability of multiple failing executions. Specifically, after the system call traces are collected, SCMiner uses data mining and statistical anomaly detection techniques to identify the failure-inducing system call sequences. It then maps each abnormal sequence to specific application functions. We have conducted an empirical study on 19 real-world benchmarks. The results show that SCMiner is both effective and efficient at localizing system-level concurrency faults.

2014-10-24
Yu, Tingting, Srisa-an, Witawas, Rothermel, Gregg.  2014.  SimRT: An Automated Framework to Support Regression Testing for Data Races. Proceedings of the 36th International Conference on Software Engineering. :48–59.

Concurrent programs are prone to various classes of difficult-to-detect faults, of which data races are particularly prevalent. Prior work has attempted to increase the cost-effectiveness of approaches for testing for data races by employing race detection techniques, but to date, no work has considered cost-effective approaches for re-testing for races as programs evolve. In this paper we present SimRT, an automated regression testing framework for use in detecting races introduced by code modifications. SimRT employs a regression test selection technique, focused on sets of program elements related to race detection, to reduce the number of test cases that must be run on a changed program to detect races that occur due to code modifications, and it employs a test case prioritization technique to improve the rate at which such races are detected. Our empirical study of SimRT reveals that it is more efficient and effective for revealing races than other approaches, and that its constituent test selection and prioritization components each contribute to its performance.

2015-01-12
Yu, Tingting, Srisa-an, Witawas, Rothermel, Gregg.  2014.  SimRT: An Automated Framework to Support Regression Testing for Data Races. International Conference on Software Engineering (ICSE) 2014, .

Concurrent programs are prone to various classes of difficult-to- detect faults, of which data races are particularly prevalent. Prior work has attempted to increase the cost-effectiveness of approaches for testing for data races by employing race detection techniques, but to date, no work has considered cost-effective approaches for re-testing for races as programs evolve. In this paper we present SIMRT, an automated regression testing framework for use in de- tecting races introduced by code modifications. SIMRT employs a regression test selection technique, focused on sets of program ele- ments related to race detection, to reduce the number of test cases that must be run on a changed program to detect races that occur due to code modifications, and it employs a test case prioritiza- tion technique to improve the rate at which such races are detected. Our empirical study of SIMRT reveals that it is more efficient and effective for revealing races than other approaches, and that its con- stituent test selection and prioritization components each contribute to its performance.